Advertisement

Nonlinear Pulse Propagation in Fibre Gratings

  • B. J. Eggleton
  • C. Martijn de Sterke
  • R. E. Slusher
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 91)

Abstract

A set of high-intensity pulse propagation experiments in optical fibre gratings, leading to slow propagation and soliton formation, is discussed. The results are analyzed using the nonlinear Schrödinger equation, which applies in almost the entire regime we consider here. Indeed, good quantitative agreement between experiments and theory and numerical calculations is found, except perhaps where second-order soliton dynamics is prominent.

Keywords

Couple Mode Equation Soliton Formation Soliton Compression Fundamental Soliton Incoming Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, G. P. (1995). Nonlinear Fiber Optics. Academic, San Diego.Google Scholar
  2. Arraf, A., de Sterke, C. M., Poladian, L., and Brown, T. G. (1997). Effective medium approach for counterpropagating waves in bragg gratings. J. Opt. Soc. Am. A, 14:1137–1143.ADSCrossRefGoogle Scholar
  3. Cross, P. S. and Kogelnik, H. (1977). Sidelobe suppression in corrugatedwaveguide filters. Opt. Lett., 1:43–45.ADSCrossRefGoogle Scholar
  4. de Sterke, C. (1998a). Propagation through apodized gratings. Opt. Express, 3:405–410.ADSCrossRefGoogle Scholar
  5. de Sterke, C. M. (1998b). JMA Volumes in Mathematics and its Applications, Volume 101: Nonlinear Optical Materials, chapter Nonlinear optics in structures with dimensional confinement, pages 109–129. Springer, New York.Google Scholar
  6. de Sterke, C. M. and Eggleton, B. (1999). Bragg solitons and the nonlinear Schrodinger equation. Phys. Rev. E, 59:1267–1269.ADSCrossRefGoogle Scholar
  7. de Sterke, C. M. and Sipe, J. E. (1994). Progress in Optics XXXIII, chapter III—Gap Solitons, pages 203–260. Elsevier, Amsterdam.Google Scholar
  8. Eggleton, B., de Sterke, C., and Slusher, R. (1999). Bragg solitons in the nonlinear Schrodinger limit: experiment and theory. J. Opt. Soc. Am B, 16:587–599.ADSCrossRefGoogle Scholar
  9. Eggleton, B., Stephens, T., Krug, P., Dhosi, G., Brodzeli, Z., and Ouelette, F. (1996a). Dispersion compensation over 100 km at 10 gbit/s using a fibre grating in transmission. Electron. Lett., 32:1610–1611.CrossRefGoogle Scholar
  10. Eggleton, B. J., de Sterke, C. M., Aceves, A. B., Sipe, J. E., Strasser, T. A., and Slusher, R. E. (1998). Modulational instability and multiple soliton pulse generation in apodized fiber gratings. Opt. Comm., 149:267–271.ADSCrossRefGoogle Scholar
  11. Eggleton, B. J., de Sterke, C. M., and Slusher, R. E. (1997). Nonlinear pulse propagation in bragg gratings. J. Opt. Soc. Am. B, 14:2980–2993.ADSCrossRefGoogle Scholar
  12. Eggleton, B. J., Slusher, R. E., de Sterke, C. M., Krug, P. A., and Sipe, J. E. (1996b). Bragg grating solitons. Phys. Rev. Lett., 76(10): 1627–1630.CrossRefADSGoogle Scholar
  13. Hill, K., Fujii, Y., Johnson, D., and Kawasaki, B. (1978). Photosensitivity in optical fiber waveguides: applications to reflection filter fabrication. Appl. Phys. Lett., 32:647–649.CrossRefADSGoogle Scholar
  14. Kashyap, R. (1999). Fiber Bragg Gratings. Academic, San Diego.Google Scholar
  15. Malo, B., Johnson, D. C., Bilodeau, F., Albert, J., and Hill, K. O. (1995). Apodized in-fibre bragg grating reflectors photoimprinted using a phase mask. Electron. Lett., 31:223–225.CrossRefGoogle Scholar
  16. Mollenauer, L. F., Stolen, R. H., and Gordon, J. P. (1980). Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett., 45:1095–1097.CrossRefADSGoogle Scholar
  17. Russell, P. S. J. (1991). Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures. J. Mod. Opt., 38:1599–1619.ADSCrossRefGoogle Scholar
  18. Strasser, T. A., Chandonnet, P. J., DeMarko, J., Soccolich, C. E., Pedrazzani, J. R., DiGiovanni, D. J., Andrejco, M. J., and Shenk, D. S. (1996). Optical Fiber Conference postdeadline paper PD5-2.Google Scholar
  19. Taverner, D., Broderick, N., Richardson, D., Laming, R., and Ibsen, M. (1998). Nonlinear self-switching and multiple-gap soliton formation in a fiber bragg grating. Opt. Lett., 23:328–330.ADSCrossRefGoogle Scholar
  20. Winful, H. (1985). Pulse compression in optical fiber filters. Appl. Phys. Lett., 46:527–529.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • B. J. Eggleton
    • 1
  • C. Martijn de Sterke
    • 2
    • 3
  • R. E. Slusher
    • 1
  1. 1.Bell LaboratoriesLucent TechnologiesMurray HillUSA
  2. 2.School of PhysicsUniversity of SydneyAustralia
  3. 3.Australian Photonics CRCAustralian Technology ParkEveleighAustralia

Personalised recommendations