Advertisement

Surface Plasmons and Zero Order Metal Gratings

  • J. R. Sambles
  • T. W. Preist
  • W. C. Tan
  • N. P. Wanstall
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 91)

Abstract

Metallic gratings may give rise to coupling of radiation to surface plasmons even when the grating is zero-order, that is there are no real diffracted beams. This coupling occurs when the grating grooves are so deep that the conventional dispersion curve for surface plasmons on a flat interface is so strongly perturbed by the deep grating grooves that direct, radiative, coupling may occur without the requirement of in-plane momentum enhancement. A consequence of this is strong absorption of incident radiation by such deeply corrugated metal surfaces provided the incident radiation is polarised in a direction orthogonal to the grating grooves. In addition there is substantial electromagnetic field enhancement associated with the surface plasmon mode excitation. A physical interpretation of the surface plasmon resonances on these deeply grooved surfaces is that they are coupled resonances arising from the plasmons on opposite sides of a metallic groove coupling across from one side of the narrow groove to the other. Modelling for deep zero order gratings confirms the nature of this new family of coupled standing wave surface plasmons for both conventional as well as highly blazed, overhanging, grating grooves.

Keywords

Surface Plasmon Resonance Surface Enhance Raman Spectroscopy Dispersion Curve Groove Width Groove Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    E. Kretschmann, and H. Raether, Z. Naturf., A 23, 2135, 1968.Google Scholar
  2. 2).
    A. Otto, Z. Phys., 216, 398, 1968.CrossRefADSGoogle Scholar
  3. 3).
    R. W. Wood, Philos. Mag., 4, 396, 1902.Google Scholar
  4. 4).
    U. Fano, J. Opt. Soc. Am., 31, 213, 1941.CrossRefADSGoogle Scholar
  5. 5).
    A. Hessel, and A. A. Oliner, Appl. Opt., 4, 1275, 1965.ADSCrossRefGoogle Scholar
  6. 6).
    L. R. Ingersoll, Astrophysical J., 51, 129, 1920.CrossRefADSGoogle Scholar
  7. 7).
    L. R. Ingersoll, Phys. Rev., 17, 493, 1921.CrossRefADSGoogle Scholar
  8. 8).
    C. H. Palmer, J. Opt. Soc. Am., 9, 269, 1952.CrossRefADSGoogle Scholar
  9. 9).
    J. E. Stewart, and W. S. Gallaway, Appl. Opt., 1, 421, 1962.ADSCrossRefGoogle Scholar
  10. 10).
    C. H. Palmer, F. C. Evering, and F. M. Nelson, Appl. Opt., 4, 1271, 1965.ADSCrossRefGoogle Scholar
  11. 11).
    J. Hagglund, and F. Sellberg, J. Opt. Soc. Am., 56, 1031, 1966.CrossRefADSGoogle Scholar
  12. 12).
    R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, Phys. Rev. Lett., 21, 1530, 1968.CrossRefADSGoogle Scholar
  13. 13).
    I. Pockrand, Phys. Lett., 49A, 259, 1974.ADSGoogle Scholar
  14. 14).
    I. Pockrand, J. Phys. D: Appl. Phys., 9, 2423, 1976.CrossRefADSGoogle Scholar
  15. 15).
    E. H. Rosengart, and I. Pockrand, Optics Lett., 1, 194, 1977.ADSCrossRefGoogle Scholar
  16. 16).
    W. Rothballer, Opt. Comm., 20, 429, 1977.ADSCrossRefGoogle Scholar
  17. 17).
    H. Raether, Opt. Comm., 42, 217, 1982.ADSCrossRefGoogle Scholar
  18. 18).
    S. H. Zaidi, M. Yousaf, and S. R. J. Brueck, J. Opt. Soc. Am., B 8, 770, 1991.ADSGoogle Scholar
  19. 19).
    S. H. Zaidi, M. Yousaf, and S. R. J. Brueck, J. Opt. Soc. Am. B 8, 1348, 1991.ADSGoogle Scholar
  20. 20).
    F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett., 77, 1163, 1996.ADSCrossRefGoogle Scholar
  21. 21).
    J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, J. Opt. Soc. Am., 72, 839, 1982.ADSCrossRefGoogle Scholar
  22. 22).
    T. W. Preist, J. B. Harris, N. P. Wanstall and J. R. Sambles, J. Mod. Opt., 44, 1073, 1997.ADSGoogle Scholar
  23. 23).
    M. B. Sobnack, W-C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, Phys. Rev. Lett., 80, 5667, 1998.CrossRefADSGoogle Scholar
  24. 24).
    N. P. Wanstall, T. W. Preist, W-C. Tan, M. B. Sobnack, and J. R. Sambles, J. Opt. Soc. Am., A 15, 869, 1998.Google Scholar
  25. 25).
    B. Laks, D. L. Mills, and A. A. Maradudin, Phys. Rev., B 15, 4965, 1981.ADSGoogle Scholar
  26. 26).
    F. Toigo, A. Marvin, V. Celli, and N. R. Hill, Phys. Rev., B 15, 5618, 1975.ADSGoogle Scholar
  27. 27).
    A. Wirgin, and T. Lopez-Rios, Opt. Comm., 122, 147, 1984.Google Scholar
  28. 28).
    J. W. Strutt (Lord Rayleigh), Proc. Roy. Soc., A79, 399, 1907.Google Scholar
  29. 29).
    W-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev., B 19, 12661, 1999.ADSGoogle Scholar
  30. 30).
    W-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Acta Photonica Sinica, 27, 91, 1998.Google Scholar
  31. 31).
    D. J. Nash, and J. R. Sambles, J. Mod. Opt., 43, 81, 1996.ADSGoogle Scholar
  32. 32).
    E. N. Economou, Phys. Rev. 182, 539, 1969.CrossRefADSGoogle Scholar
  33. 33).
    T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature, 391, 667, 1998.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • J. R. Sambles
    • 1
  • T. W. Preist
    • 1
  • W. C. Tan
    • 1
  • N. P. Wanstall
    • 1
  1. 1.Thin Film Photonics Group, School of PhysicsUniversity of ExeterExeterUK

Personalised recommendations