Advertisement

Photonic Bands and Scattering for Stacks of Lossy, Dispersive Cylinders

  • N. A. Nicorovici1
  • R. C. McPhedran
  • L. C. Botten
  • A. A. Asatryan
  • P. A. Robinson
  • C. M. de Sterke
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 91)

Abstract

We have developed an original method to investigate stacks of gratings, consisting of dielectric or metallic, circular cylinders. The accuracy of the method is not affected by the high contrast between the cylinders and the surrounding medium. Also, our formulation enable us to find the edges of the band gaps in photonic band diagrams.

Keywords

Recurrence Relation Auxiliary Equation Dielectric Cylinder Transmission Matrice Inhomogeneous Helmholtz Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. and Stegun, I. A., editors (1972). Handbook of Mathematical Functions, pages 355–433. Dover, New York.zbMATHGoogle Scholar
  2. Bell, P. M., Pendry, J. B., Moreno, L. M., and Ward, A. J. (1995). A program for calculating photonic band structures and transmission coefficients of complex structures. Comp. Phys. Commun., 85:306–322.ADSCrossRefGoogle Scholar
  3. Botten, L. C, Nicorovici, N. A., Asatryan, A. A., McPhedran, R. C., de Sterke, C. M., and Robinson, P. A. (1999). Electromagnetic scattering and propagation through gratings stacks of metallic and dielectric cylinders for photonic crystal calculations. J. Opt. Soc. Am. A. in press.Google Scholar
  4. Dowling, J., Everitt, H., and Yablonovitch, E. (1999). Photonic & Acoustic Band-Gap Bibliography (http://home.earthlink.net/jpdowling).
  5. Felbacq, D., Tayeb, G., and Maystre, D. (1994). Scattering by a random set of parallel cylinders. J. Opt. Soc. Am. A, 11:2526–2538.ADSMathSciNetCrossRefGoogle Scholar
  6. Gadot, F., Akmansoy, E., Brillat, T., de Lustrac, A., and Lourtioz, J. M. (1999). Band gap engineering in metallic PBG materials at microwave frequencies using composite material and defect lattice. Mechanical and Electromagnetic Waves in Structured Media IUTAM Symposium 99/4, Sydney, Australia.Google Scholar
  7. Horwitz, C. M., McPhedran, R. C., and Beunen, J. (1978). Interference and diffraction in globular metal films. J. Opt. Soc. Am., 68:1023–1031.ADSCrossRefGoogle Scholar
  8. Li, L. M. and Zhang, Z. Q. (1998). Multiple-scattering approach to finite-sized photonic band-gap materials. Phys. Rev. B, 58:9587–9590.ADSCrossRefGoogle Scholar
  9. Lo, K. M., McPhedran, R. C., Bassett, I. M., and Milton, G. W. (1994). An electromagnetic theory of dielectric waveguides with multiple embedded cylinders. IEEE J. Lightwave Technol., 12:396–410.CrossRefADSGoogle Scholar
  10. Maystre, D. (1984). Rigorous vector theories of diffraction gratings, volume XXI of Progress in Optics, pages 1–67. North-Holland, Amsterdam.Google Scholar
  11. Maystre, D. (1994). Electromagnetic study of photonic band gaps. Pure Appl. Opt., 3:975–993.CrossRefADSGoogle Scholar
  12. McPhedran, R. C. and Botten, L. C. (1985). Phase constrains for lossy symmetric structures. Opt. Acta, 32:595–605.ADSGoogle Scholar
  13. McPhedran, R. C., Botten, L. C., Asatryan, A. A., Nicorovici, N. A., de Sterke, C. M., and Robinson, P. A. (1999a). Ordered and disordered photonic band gap materials. Aust. J. Phys., 52:791–809.ADSzbMATHGoogle Scholar
  14. McPhedran, R. C., Botten, L. C., Asatryan, A. A., Nicorovici, N. A., Robinson, P. A., and de Sterke, C. M. (1999b). Calculation of electromagnetic properties of regular and random arrays of metallic and dielectric cylinders. Phys. Rev. E, 60:7614–7617.CrossRefADSGoogle Scholar
  15. McPhedran, R. C., Nicorovici, N. A., and Botten, L. C. (1997a). The TEM mode and homogenization of doubly periodic structures. J. Electromagn. Waves Applic., 11:981–1012.zbMATHCrossRefGoogle Scholar
  16. McPhedran, R. C., Nicorovici, N. A., Botten, L. C., and Bao, K.-D. (1997b). Green’s Junction, lattice sum and Rayleigh’s identity for a dynamic scattering problem, volume 96 of IMA Volumes in Mathematics and its Applications, pages 155–186. Springer-Verlag, New York.Google Scholar
  17. McPhedran, R. C., Nicorovici, N. A., Botten, L. C., de Sterke, C. M., Robinson, P. A., and Asatryan, A. A. (1999c). Anomalous absorptance by stacked metallic cylinders. Opt. Comm., 168:47–53.ADSCrossRefGoogle Scholar
  18. Nicorovici, N. A. and McPhedran, R. C. (1994). Lattice sums for off-axis electromagnetic scattering by gratings. Phys. Rev. E, 50:3143–3160.CrossRefADSGoogle Scholar
  19. Nicorovici, N. A., McPhedran, R. C., and Petit, R. (1994). Efficient calculation of the Green’s function for electromagnetic scattering by gratings. Phys. Rev. E, 49:4563–4577.CrossRefADSGoogle Scholar
  20. Palik, E. D. (1993). The Handbook of Optical Constants of Solids. Academic, New York.Google Scholar
  21. Sigalas, M. M., Chan, C. T., Ho, K. M., and Soukoulis, C. M. (1995). Metallic photonic band-gap materials. Phys. Rev. B, 52:11744–11751.CrossRefADSGoogle Scholar
  22. Twersky, V. (1961). Elementary function representations of Schlömilch series. Arch. Rational Mech. Anal, 8:323–332.zbMATHMathSciNetCrossRefADSGoogle Scholar
  23. von Ignatowsky, W. (1914). Zur Theorie der Gitter. Ann. Physik, 44:369–436.zbMATHCrossRefGoogle Scholar
  24. Wijngaard, W. (1973). Guided normal modes of two parallel circular dielectric rods. J. Opt. Soc. Am., 63:944–950.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • N. A. Nicorovici1
    • 1
  • R. C. McPhedran
    • 1
  • L. C. Botten
    • 2
  • A. A. Asatryan
    • 1
  • P. A. Robinson
    • 1
  • C. M. de Sterke
    • 1
  1. 1.School of PhysicsUniversity of SydneyAustralia
  2. 2.School of Mathematical SciencesUniversity of TechnologySydneyAustralia

Personalised recommendations