Advertisement

Band Gap Engineering in Metallic PBG Materials at Microwave Frequencies using Composite Material and Defect Lattice

  • F. Gadot
  • E. Akmansoy
  • T. Brillat
  • A. de Lustrac
  • J. M. Lourtioz
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 91)

Abstract

Composite metallic materials can be build using photonic band gap materials with different lattice constants, these new structures showing wider forbidden frequency bands. The insertion of lattice defect in one or more materials allows the opening of multiple frequency pass band filters in these forbidden bands. The transmission rate and the width of these filters may be adjusted with the number of defects and the geometrical parameters of the lattice. This concept may be used at any scale to realise mirrors and pass band filters at microwave or infrared frequencies.

Keywords

Photonic Crystal Defect Lattice Defect Mode Transmission Peak Transmission Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Gadot, A. Ammouche, A. de Lustrac, A. Chelnokov, F. Bouillault, P. Crozat, J.M. Lourtioz, “Photonic Band Gap Materials for Devices in the Microwave Domain”, IEEE Trans. on Magn., vol., pp, sept 98.Google Scholar
  2. 2.
    F. Gadot, E. Akmansoy, A. de Lustrac, J.-M. Lourtioz, T. Brillat, A. Ammouche, “Hightransmission defect modes in two-dimensional metallic photonic crystals”, Journal of Applied Physic, vol., pp, june 1999. 268Google Scholar
  3. 3.
    K. Agi, E.R. Brown, O.B. McMahon, C. Dill III and K.J. Malloy, “Design of ultrawideband photonic crystals for broadband antenna applications”, Electronics letters, vol. 30, n∘25, pp. 2166–2167.Google Scholar
  4. 4.
    J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures”, Phys. Rev. Lett., 76(25), pp. 4773, 1996CrossRefADSGoogle Scholar
  5. 5.
    M. M. Sigalas, C. T. Chan, K. M. Ho and C. M. Soukoulis, “Metallic photonic band-gap materials”, Phys. Rev. B, 52(16), pp. 11744, 1995.CrossRefADSGoogle Scholar
  6. 6.
    G.C. Southworth, “Principles and applications of waveguide transmission”, D. Van Nostrand Company, New-York (1950)Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • F. Gadot
    • 1
  • E. Akmansoy
    • 3
  • T. Brillat
    • 2
  • A. de Lustrac
    • 1
  • J. M. Lourtioz
    • 1
  1. 1.Institut d’Electronique FondamentaleUniversité Paris XIOrsayFrance
  2. 2.Groupe d’Electromagnétisme Appliqué, IUT de Ville d’AvrayUniversité Paris XVille d’AvrayFrance
  3. 3.Institut d’Optique Théorique et AppliquéeUniversité Paris XIOrsayFrance

Personalised recommendations