Advances in the Rayleigh Multipole Method for Problems in Photonics and Phononics

  • R. C. McPhedran
  • N. A. Nicorovici
  • L. C. Botten
  • A. B. Movchan
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 91)


We review the basis of the Rayleigh multipole method for scattering and propagation problems in photonics and phononics. The method assumes the corresponding problem for a single inclusion has been solved, and generalizes the solution to a periodic array of such inclusions. We discuss the link between the method and representations of Green’s functions involving lattice sums.


Helmholtz Equation Addition Theorem Effective Dielectric Constant Neumann Function Dilational Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M. and Stegun, I. A., editors (1972). Handbook of Mathematical Functions, pages 355–433. Dover, New York.zbMATHGoogle Scholar
  2. Glasser, M. L. and Zucker, I. J. (1980). Lattice sums. Theoretical Chemistry: Advances and Perspectives, 5:67–139.Google Scholar
  3. Movchan, A. B., Nicorovici, N. A., and McPhedran, R. C. (1997). Green’s tensors and lattice sums for elastostatics and elastodynamics. Proc. R. Soc. Lond. A, 453:643–662.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. Nicorovici, N. A., McPhedran, R. C., and Botten, L. C. (1995). Photonic band gaps: non-commuitng limits and the “acoustic” band. Phys. Rev. Lett., 75:1507–1510.CrossRefADSGoogle Scholar
  5. Perrins, W. T., McKenzie, D. R., and McPhedran, R. C. (1979). Transport properties of regular arrays of cylinders. Proc. R. Soc. Lond. A, 369:207–225.ADSMathSciNetCrossRefGoogle Scholar
  6. Poulton, C. G., Botten, L. C., McPhedran, R. C., Nicorovici, N. A., and Movchan, A. B. (1999a). Boundary layers and non-commuting limits in electromagnetic scattering. SIAM J. Appl. Math. submitted.Google Scholar
  7. Poulton, C. G., Movchan, A., McPhedran, R., Nicorovici, N., and Antipov, Y. A. (1999b). Eigenvalue problems for doubly periodic elastic structures and hononic band gaps. Proceedings of the Royal Society London. submittedGoogle Scholar
  8. Strutt, J. W. (1892). On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil. Mag., 34:481–502.Google Scholar
  9. Twersky, V. (1961). Elementary function representations of Schlömilch series. Arch. Rational Mech. Anal., 8:323–332.zbMATHMathSciNetCrossRefADSGoogle Scholar
  10. von Ignatowsky, W. (1914). Zur Theorie der Gitter. Ann. Physik, 44:369–436.zbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • R. C. McPhedran
    • 1
  • N. A. Nicorovici
    • 1
  • L. C. Botten
    • 2
  • A. B. Movchan
    • 3
  1. 1.School of PhysicsUniversity of SydneyAustralia
  2. 2.School of Mathematical SciencesUniversity of TechnologySydneyAustralia
  3. 3.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations