Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 91))

Conclusion

In a first part of this paper, it has been shown from numerical results based on a theory of scattering from thin metallic wires that the formulae coming from mathematical studies of homogenization provides a precise estimate of the properties of metallic photonic crystals, even when the wavelength has the same order of magnitude as the period of the crystal. This property which could simplify considerably the numerical calculations is all the more interesting since it extends to doped crystals.

In a second part we have confirmed from numerical calculations the phenomenon of ultrarefraction generated by photonic crystals at the edges of a gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures”, Phys. Rev. Lett. 76, 4773–4776 (1996).

    Article  ADS  Google Scholar 

  2. D. Felbacq and G. Bouchitté, “Homogenization of a set of parallel fibers”, Waves in random media 7, 245–256 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. R.C. McPhedran, C.G. Poulton, N.A. Nicorovici and A.B. Movchan, “Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material”, Proc. R. Soc. Lond. A 452, 2231–2245 (1996).

    ADS  Google Scholar 

  4. R.C. McPhedran, N.A. Nicorovici and L.C Botten, “The TEM mode and homogenization of doubly periodic structures”, J. Electrom. Waves and Appl. 11, 981–1012 (1997).

    Article  MATH  Google Scholar 

  5. D. Maystre, “Electromagnetic study of photonic band gaps”, Pure Appl. Opt. 8, 875–993 (1994).

    Google Scholar 

  6. D. Felbacq, G. Tayeb and D. Maystre, “Scattering by a random set of parallel cylinders”, J. Opt. Soc. Am. A 11, 2526–2538 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Guida, D. Maystre, G. Tayeb, and P. Vincent, “Electromagnetic modelling of three-dimensional metallic photonic crystals”, J. Electr. Waves and Appl. 12, 1153–1179 (1998).

    Article  MATH  Google Scholar 

  8. S. Enoch, G. Tayeb and D. Maystre, “Numerical evidence of ultrarefractive optics in photonic crystals”, Optics Comm. 161, 171–176 (1999).

    Article  ADS  Google Scholar 

  9. R. Harrington, “Matrix methods for field problems”, Proc. IEEE, Vol. 55, No. 2, 136–149 (1967).

    Article  Google Scholar 

  10. G. Guida, “Numerical study of band gaps generated by randomly perturbed bidimensional metallic cubic photonic crystals”, Optics Comm. 156, 294–296 (1998).

    Article  ADS  Google Scholar 

  11. G. Guida, D. Maystre, G. Tayeb and P. Vincent, “Mean-field theory of two-dimensional metallic photonic crystals”, J. Opt. Soc. Am. B 15, 2308–2315 (1998).

    ADS  Google Scholar 

  12. J.P. Dowling and C.M. Bowden, “Anomalous index of refraction in photonic bandgap materials”, Journal of Modern Optics 41, 345–351 (1994).

    Article  ADS  Google Scholar 

  13. P. M. Wisser, G. Nienhuis, “Band gaps and group velocity in optical lattices”, Optics Comm. 136, 470–479 (1997).

    Article  ADS  Google Scholar 

  14. R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides”, J. Mod. Optics 34, 1589–1617 (1987).

    Article  ADS  Google Scholar 

  15. D.R. Smith, S. Schultz, S.L. McCall, P.M. Platzmann, “Defect studies in a twodimensional periodic photonic lattice”, Journal of Modern Optics 41, 395–404 (1994).

    Article  ADS  Google Scholar 

  16. M. Plihal and A.A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice”, Phys. Rev. B44, 8565–8571 (1991).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Maystre, D., Tayeb, G., Vincent, P., Enoch, S., Guida, G. (2001). Electromagnetic Modelling of Dielectric and Metallic Photonic Crystals. In: IUTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media. Solid Mechanics and Its Applications, vol 91. Springer, Dordrecht. https://doi.org/10.1007/0-306-46955-3_19

Download citation

  • DOI: https://doi.org/10.1007/0-306-46955-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7038-3

  • Online ISBN: 978-0-306-46955-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics