Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 91))

  • 236 Accesses

Abstract

We study the long-wavelength limit for an arbitrary photonic crystal (PC) of 2D periodicity. Light propagation is not restricted to the plane of periodicity. We proved that 2D PC’s are uni-axial or bi-axial and derived compact, explicit formulas for the effective (“principal”) dielectric constants; these are plotted for silicon - air composites. This could facilitate the custom design of optical components for diverse spectral regions and applications. Our method of “homogenization” is not limited to optical properties, but is also valid for electrostatics, magnetostatics, DC conductivity, thermal conductivity, etc. Thus our results are applicable to the Physics of Inhomogeneous Media where exact, compact formulas are scarce. Our numerical method yields results with very high accuracy, even for very large dielectric contrasts and filling fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  2. Joannopoulos, J., Meade, R. and Winn, J., Photonic Crystals (Princeton Press, Princeton, NJ, 1995).

    MATH  Google Scholar 

  3. Hui, P.M. and Johnson, F., Solid State Phys. 49, 151 (1995).

    Article  Google Scholar 

  4. Joannopoulos, J., Villeneuve, P.R. and Fan, S., Nature 386, 143 (1997).

    Article  ADS  Google Scholar 

  5. Krauss, T.F. De la Rue, R.M. and Brand, S., Nature 383, 699 (1996).

    Article  ADS  Google Scholar 

  6. Foresi, J.S. et al., Nature 390, 143 (1997).

    Article  ADS  Google Scholar 

  7. Datta, S., Chan, C.T., Ho, K.M. and Soukoulis C.M., Phys. Rev. B 48, 14936 (1993).

    ADS  Google Scholar 

  8. Leung, K.M. and Lin, Y.F., Phys. Rev. Lett. 65, 2646 (1990).

    Article  ADS  Google Scholar 

  9. Haus, J.W., Sözüer, H.S. and Inguva, R., J. Mod. Optics 39, 1991 (1992).

    Article  ADS  Google Scholar 

  10. Zabel, I.H.H. & Stroud, D., Phys. Rev. B 48, 5004 (1993).

    ADS  Google Scholar 

  11. McPhedran, R.C. Nicorovici, N.A. and Botten, L.C., J. Electrom. Waves Appl. 11, 981 (1997); Phys. Rev. Lett., 75, 1507 (1995).

    Article  MATH  Google Scholar 

  12. Krokhin, A.A., Arriaga, J. and Halevi, P., Physica A 241, 52 (1997).

    ADS  Google Scholar 

  13. Bora, M. and Wolf, E. Principles of Optics (Pergamon Press, Oxford, 1975), chap. 14.

    Google Scholar 

  14. Bergman, D.J. and Stroud, D., Solid State Phys. 46, 197 (1992).

    Google Scholar 

  15. P. Halevi, A. A. Krokhin, and J. Arriaga, Phys. Rev. Lett. 82, 719 (1999).

    Article  ADS  Google Scholar 

  16. Nevard, J. and Keller, J.B., J. Math. Phys. 26, 2761 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Landau L.D. and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984).

    Google Scholar 

  18. Hashin, Z. and Shtrikman, S., J. Appl. Phys. 33, 3125 (1962).

    Article  MATH  ADS  Google Scholar 

  19. Lin, S.Y., Hietala, V.M., Wang, L. and Jones, E.D., Optics Lett. 21, 1771, (1996).

    Article  ADS  Google Scholar 

  20. Karathanos, V., Stefanou, N. and Modinos, A., J. Mod. Optics 42, 619 (1995).

    Article  ADS  Google Scholar 

  21. Bergman, D.J. and Dunn, K.J., Phys. Rev. B 45, 13262 (1992). It is possible to prove that Eqs. (2.5), (2.23) and (2.26) of this paper lead to our Eq. (2) (D. Bergman, private communication).

    ADS  Google Scholar 

  22. Milton, G.W., McPhedran, R.C. and McKenzie, D.R., Appl. Phys. 25, 23 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Halevi, P., Krokhin, A.A., Arriaga, J. (2001). Photonic Crystal Optics and Homogenization of 2D Periodic Composites. In: IUTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media. Solid Mechanics and Its Applications, vol 91. Springer, Dordrecht. https://doi.org/10.1007/0-306-46955-3_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-46955-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7038-3

  • Online ISBN: 978-0-306-46955-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics