Advertisement

Photonic Crystal Optics and Homogenization of 2D Periodic Composites

  • P. Halevi
  • A. A. Krokhin
  • J. Arriaga
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 91)

Abstract

We study the long-wavelength limit for an arbitrary photonic crystal (PC) of 2D periodicity. Light propagation is not restricted to the plane of periodicity. We proved that 2D PC’s are uni-axial or bi-axial and derived compact, explicit formulas for the effective (“principal”) dielectric constants; these are plotted for silicon - air composites. This could facilitate the custom design of optical components for diverse spectral regions and applications. Our method of “homogenization” is not limited to optical properties, but is also valid for electrostatics, magnetostatics, DC conductivity, thermal conductivity, etc. Thus our results are applicable to the Physics of Inhomogeneous Media where exact, compact formulas are scarce. Our numerical method yields results with very high accuracy, even for very large dielectric contrasts and filling fractions.

Keywords

Photonic Crystal Filling Fraction Phononic Crystal Electric Field Parallel Apartado Postal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).CrossRefADSGoogle Scholar
  2. [2]
    Joannopoulos, J., Meade, R. and Winn, J., Photonic Crystals (Princeton Press, Princeton, NJ, 1995).zbMATHGoogle Scholar
  3. [3]
    Hui, P.M. and Johnson, F., Solid State Phys. 49, 151 (1995).CrossRefGoogle Scholar
  4. [4]
    Joannopoulos, J., Villeneuve, P.R. and Fan, S., Nature 386, 143 (1997).CrossRefADSGoogle Scholar
  5. [5]
    Krauss, T.F. De la Rue, R.M. and Brand, S., Nature 383, 699 (1996).CrossRefADSGoogle Scholar
  6. [6]
    Foresi, J.S. et al., Nature 390, 143 (1997).ADSCrossRefGoogle Scholar
  7. [7]
    Datta, S., Chan, C.T., Ho, K.M. and Soukoulis C.M., Phys. Rev. B 48, 14936 (1993).ADSGoogle Scholar
  8. [8]
    Leung, K.M. and Lin, Y.F., Phys. Rev. Lett. 65, 2646 (1990).CrossRefADSGoogle Scholar
  9. [9]
    Haus, J.W., Sözüer, H.S. and Inguva, R., J. Mod. Optics 39, 1991 (1992).ADSCrossRefGoogle Scholar
  10. [10]
    Zabel, I.H.H. & Stroud, D., Phys. Rev. B 48, 5004 (1993).ADSGoogle Scholar
  11. [11]
    McPhedran, R.C. Nicorovici, N.A. and Botten, L.C., J. Electrom. Waves Appl. 11, 981 (1997); Phys. Rev. Lett., 75, 1507 (1995).zbMATHCrossRefGoogle Scholar
  12. [12]
    Krokhin, A.A., Arriaga, J. and Halevi, P., Physica A 241, 52 (1997).ADSGoogle Scholar
  13. [13]
    Bora, M. and Wolf, E. Principles of Optics (Pergamon Press, Oxford, 1975), chap. 14.Google Scholar
  14. [14]
    Bergman, D.J. and Stroud, D., Solid State Phys. 46, 197 (1992).Google Scholar
  15. [15]
    P. Halevi, A. A. Krokhin, and J. Arriaga, Phys. Rev. Lett. 82, 719 (1999).CrossRefADSGoogle Scholar
  16. [16]
    Nevard, J. and Keller, J.B., J. Math. Phys. 26, 2761 (1985).CrossRefADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    Landau L.D. and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984).Google Scholar
  18. [18]
    Hashin, Z. and Shtrikman, S., J. Appl. Phys. 33, 3125 (1962).CrossRefzbMATHADSGoogle Scholar
  19. [19]
    Lin, S.Y., Hietala, V.M., Wang, L. and Jones, E.D., Optics Lett. 21, 1771, (1996).ADSCrossRefGoogle Scholar
  20. [20]
    Karathanos, V., Stefanou, N. and Modinos, A., J. Mod. Optics 42, 619 (1995).ADSCrossRefGoogle Scholar
  21. [21]
    Bergman, D.J. and Dunn, K.J., Phys. Rev. B 45, 13262 (1992). It is possible to prove that Eqs. (2.5), (2.23) and (2.26) of this paper lead to our Eq. (2) (D. Bergman, private communication).ADSGoogle Scholar
  22. [22]
    Milton, G.W., McPhedran, R.C. and McKenzie, D.R., Appl. Phys. 25, 23 (1981).CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • P. Halevi
    • 1
  • A. A. Krokhin
    • 2
  • J. Arriaga
    • 2
  1. 1.Instituto de AstrofÍsica, Optica y ElectrónicaPueblaMéxico
  2. 2.Instituto de FísicaUniversidad Autónoma de PueblaPueblaMéxico

Personalised recommendations