Longitudinal Magneto-elastic Waves in Solids with Microstructure

  • V. Erofeyev
  • V. Kazhaev
  • S. Kovalev
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 91)


Propagation of longitudinal magneto-elastic waves in a conducting medium is considered. Dispersion characteristics for the medium without microstructure and Le Roux continuum are discussed. It is shown that wave propagation depends on the intensity of a magnetic field.


Magnetic Field Nonlinear Wave Dispersion Characteristic Conducting Medium Magnetoelastic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chadwick P. (1957) Elastic Wave Propagation in a Magnetic Field // Proc. 9 Intern Congress Appl. Mech.Google Scholar
  2. Beliy I.V., Fertik S.M. and Klimenko L.T. (1997) Reference book on magneto-pulse treatment of metals. Kharkov: Vitcha shkola. (in Russian).Google Scholar
  3. Pospelov L.A. (1963) Nonlinear magneto-elastic waves. PMM. No 5. p. 939–941.(in Russian)Google Scholar
  4. Baser J. and Ericson W.B. (1974) Nonlinear Motion in Magnetoelasticity // Arch. Rat. Mech. Anal. V. 55. P. 124–192.Google Scholar
  5. Selezov I.T. (1978) Propagation of nonlinear magneto-elastic and magneto-acoustic waves. Nonlinear strain waves. Tallin: Inst.of cybernetics of AN ESSR. V.2, pp. 153–156. (in Russian)Google Scholar
  6. Donato A. and Fusco D. (1980) Some applications of the Riemann method to electromagnetic wave propagation in non-linear media // ZAMM. V. 60. P. 539–542.MathSciNetGoogle Scholar
  7. Donato A. (1987) Similarity analysis and non-linear wave propagation // Int. J. Non Linear Mechanics. V. 22, □4. P. 307–314.zbMATHMathSciNetGoogle Scholar
  8. Domanski W. (1993) Weakly Nonlinear Magnetoelastic Waves // Proc. IUTAM Symp. Nonlinear Waves in Solids. Univ. of Victoria, Victoria British Colambia, Canada. P. 32.Google Scholar
  9. Erofeyev V. and Kovalev S. (1998) Microstructured Solids: Non-linear Models and Analysis of Magneto-Elastic Wave Processes // Material Instabilities in Solids Edited by R. De Borst and E. van der Giessen. John Wiley & Sons Ltd., P.54.Google Scholar
  10. Erofeyev V.I. (1993) Magnetoelastic Nonlinear Waves in Solids with Microstructure // Appl. Mech. Rev. V. 46, □12. Part 1. P. 557.Google Scholar
  11. Erofeyev V.I. (1996) Microstructured Solids. Intelservice Pabl. Comp.Google Scholar
  12. Le Roux (1911) Etude geometrique de la torsion et de la flexion, Ann. Ec. Norm. Super. Paris, Vol.28.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • V. Erofeyev
    • 1
  • V. Kazhaev
    • 1
  • S. Kovalev
    • 1
  1. 1.Mechanical Engineering Research InstituteRussian Academy of Sciences, IMASh RanNizhny NovgorodRussia

Personalised recommendations