Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 91))

  • 230 Accesses

Abstract

We review some of the transport problems for composites, discussing the deep connections between various transport problems, leading to exact relations between apparently unconnected transport coefficients. We also discuss composites whose effective properties are very different from those of either constituent, including structures in which electromagnetic waves have a group velocity either higher than, or lower than, that for either of the two constituent phases. Additionally we discuss how to configure fixed proportions of two non-linear phases in a composite so as to maximize the current for a given applied electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers, W. (1973). Proceedings of the conference on in situ composites, Sept. 5–8, 1972, Lakeville, Connecticut, volume 3, pages 1–19. National Academy of Sciences, Washington. Publication NMAB-308-III.

    Google Scholar 

  • Cherkaev, A. V. and Gibiansky, L. V. (1994). Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli. J. Math. Phys., 35:127–145.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dykhne, A. M. (1971). Conductivity of a two-dimensional two-phase system. Soviet Physics JETP, 32:63–65.

    ADS  Google Scholar 

  • Grabovsky, Y. (1998). Exact relations for effective tensors of polycrystals. I: Necessary conditions. Arch. Rat. Mech. Anal., 143:309–329.

    Article  MATH  MathSciNet  Google Scholar 

  • Grabovsky, Y. and Milton, G. W. (1998). Exact relations for composites: towards a complete solution. Doc. Math., J. DMV, Extra Volume ICM III:623–632.

    MathSciNet  Google Scholar 

  • Grabovsky, Y., Milton, G. W., and Sage, D. S. (2000). Exact relations for effective tensors of composites: necessary conditions and sufficient conditions. Comm. Pure. Appl. Math., 53:300–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Grabovsky, Y. and Sage, D. S. (1998). Exact relations for effective tensors of polycrystals. II: Applications to elasticity and piezoelectricity. Arch. Rat. Mech. Anal., 143:331–356.

    Article  MathSciNet  MATH  Google Scholar 

  • Harshé, G., Dougherty, J. P., and Newnham, R. E. (1993). Theoretical modelling of multilayer magnetoelectric composites. Int. J. Appl. Electromagn. Mater., 4:161–171.

    Google Scholar 

  • Hill, R. (1963). Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids, 11:357–372.

    Article  ADS  MATH  Google Scholar 

  • Jackson, J. D. (1966). Classical Electrodynamics. John Wiley, New York.

    Google Scholar 

  • Lakes, R. (1987). Foam structures with a negative Poisson’s ratio. Science, 235:1038–1040.

    Article  ADS  Google Scholar 

  • Lakes, R. (1996). Cellular solid structures with unbounded thermal expansion. J. Mater. Sci. Lett., 15:475–477.

    Google Scholar 

  • Larsen, U. D., Sigmund, O., and Bouwstra, S. (1997). Design and fabrication of compliant micro-mechanisms and structures with negative Poisson’s ratio. J. Microelectromechanical Systems, 6:99–106.

    Article  Google Scholar 

  • Levin, V. M. (1967). On the coefficients of thermal expansion of heterogeneous materials. Mechanics of Solids, 2:58–61.

    Google Scholar 

  • Lurie, K. A. and Cherkaev, A. V. (1982). Accurate estimates of the conductivity of mixtures formed of two materials in a given proportion (two-dimensional problem). Soviet Phys. Dokl., 27:461–462.

    ADS  Google Scholar 

  • Lurie, K. A. and Cherkaev, A. V. (1984). Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion. Proc. Roy. Soc. Edin. A, 99:71–87.

    MathSciNet  MATH  Google Scholar 

  • Maxwell Garnett, J. C. (1904). Colours in metal glasses and in metallic films. J. Philos. Trans. Roy. Soc. Lond., 203:385–420.

    Article  ADS  Google Scholar 

  • Milton, G. W. (1992). Composite materials with Poisson’s ratios close to −1. J. Mech. Phys. Solids., 40:1105–1137.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Milton, G. W. and Cherkaev, A. V. (1995). Which elasticity tensors are realizable? ASME J. Eng. Mat. Tech., 117:483–493.

    Article  Google Scholar 

  • Milton, G. W. and Serkov, S. K. (2000). Bounding the current in nonlinear conducting composites. J. Mech. Phys. Solids, 48:1295–1324.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Murat, F. and Tartar, L. (1985). Les méthodes de l’homogénéisation: théorie et applications en physique, volume 57 of Collection de la Direction des études et recherches d’Électricité de France, pages 319–370. Eyrolles, Paris.

    Google Scholar 

  • Ponte Castañeda, P. and Suquet, P. (1998). Nonlinear composites. Adv. Appl. Mech., 34:171–302.

    Article  Google Scholar 

  • Sigmund, O. and Torquato, S. (1996). Composites with extremal thermal expansion coefficients. Appl. Phys. Lett., 69:3203–3205.

    Article  ADS  Google Scholar 

  • Sigmund, O. and Torquato, S. (1997). Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids, 45:1037–1067.

    Article  MathSciNet  ADS  Google Scholar 

  • Solna, K. and Milton, G. W. (2000a). Bounds for the group velocity of electromagnetic signals in two phase materials. Physica B, 279:9–12.

    Article  ADS  Google Scholar 

  • Solna, K. and Milton, G. W. (2000b). Can mixing materials make electromagnetic signals travel faster? In preparation.

    Google Scholar 

  • Tartar, L. (1979). Computing methods in applied sciences and engineering: Third International Symposium Versailles, France, December 5–9, 1977, volume 704 of Lecture notes in mathematics, pages 364–373. Springer-Verlag, Berlin.

    Google Scholar 

  • Wiener, O. (1912). Die theorie des mischkörpers für das feld des stationären strömung. erste abhandlung die mittelswertsätze für kraft, polarisation und energie. Abhandlungen der mathematisch-physischen Klasse der Königlich Sächisischen Gesellschaft der Wissenschaften, 32:509–604.

    Google Scholar 

  • Wood, A. W. (1955). A textbook of sound, page 360. Bell, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Milton, G.W. (2001). Electric and Elastic Properties of Linear and Non-linear Composites. In: IUTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media. Solid Mechanics and Its Applications, vol 91. Springer, Dordrecht. https://doi.org/10.1007/0-306-46955-3_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-46955-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7038-3

  • Online ISBN: 978-0-306-46955-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics