Electric and Elastic Properties of Linear and Non-linear Composites

  • G. W. Milton
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 91)


We review some of the transport problems for composites, discussing the deep connections between various transport problems, leading to exact relations between apparently unconnected transport coefficients. We also discuss composites whose effective properties are very different from those of either constituent, including structures in which electromagnetic waves have a group velocity either higher than, or lower than, that for either of the two constituent phases. Additionally we discuss how to configure fixed proportions of two non-linear phases in a composite so as to maximize the current for a given applied electric field.


Group Velocity Transport Problem Exact Relation Effective Bulk Modulus Bubbly Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, W. (1973). Proceedings of the conference on in situ composites, Sept. 5–8, 1972, Lakeville, Connecticut, volume 3, pages 1–19. National Academy of Sciences, Washington. Publication NMAB-308-III.Google Scholar
  2. Cherkaev, A. V. and Gibiansky, L. V. (1994). Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli. J. Math. Phys., 35:127–145.CrossRefADSMathSciNetzbMATHGoogle Scholar
  3. Dykhne, A. M. (1971). Conductivity of a two-dimensional two-phase system. Soviet Physics JETP, 32:63–65.ADSGoogle Scholar
  4. Grabovsky, Y. (1998). Exact relations for effective tensors of polycrystals. I: Necessary conditions. Arch. Rat. Mech. Anal., 143:309–329.zbMATHMathSciNetCrossRefGoogle Scholar
  5. Grabovsky, Y. and Milton, G. W. (1998). Exact relations for composites: towards a complete solution. Doc. Math., J. DMV, Extra Volume ICM III:623–632.MathSciNetGoogle Scholar
  6. Grabovsky, Y., Milton, G. W., and Sage, D. S. (2000). Exact relations for effective tensors of composites: necessary conditions and sufficient conditions. Comm. Pure. Appl. Math., 53:300–353.CrossRefMathSciNetzbMATHGoogle Scholar
  7. Grabovsky, Y. and Sage, D. S. (1998). Exact relations for effective tensors of polycrystals. II: Applications to elasticity and piezoelectricity. Arch. Rat. Mech. Anal., 143:331–356.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Harshé, G., Dougherty, J. P., and Newnham, R. E. (1993). Theoretical modelling of multilayer magnetoelectric composites. Int. J. Appl. Electromagn. Mater., 4:161–171.Google Scholar
  9. Hill, R. (1963). Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids, 11:357–372.ADSzbMATHCrossRefGoogle Scholar
  10. Jackson, J. D. (1966). Classical Electrodynamics. John Wiley, New York.Google Scholar
  11. Lakes, R. (1987). Foam structures with a negative Poisson’s ratio. Science, 235:1038–1040.ADSCrossRefGoogle Scholar
  12. Lakes, R. (1996). Cellular solid structures with unbounded thermal expansion. J. Mater. Sci. Lett., 15:475–477.Google Scholar
  13. Larsen, U. D., Sigmund, O., and Bouwstra, S. (1997). Design and fabrication of compliant micro-mechanisms and structures with negative Poisson’s ratio. J. Microelectromechanical Systems, 6:99–106.CrossRefGoogle Scholar
  14. Levin, V. M. (1967). On the coefficients of thermal expansion of heterogeneous materials. Mechanics of Solids, 2:58–61.Google Scholar
  15. Lurie, K. A. and Cherkaev, A. V. (1982). Accurate estimates of the conductivity of mixtures formed of two materials in a given proportion (two-dimensional problem). Soviet Phys. Dokl., 27:461–462.ADSGoogle Scholar
  16. Lurie, K. A. and Cherkaev, A. V. (1984). Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion. Proc. Roy. Soc. Edin. A, 99:71–87.MathSciNetzbMATHGoogle Scholar
  17. Maxwell Garnett, J. C. (1904). Colours in metal glasses and in metallic films. J. Philos. Trans. Roy. Soc. Lond., 203:385–420.ADSCrossRefGoogle Scholar
  18. Milton, G. W. (1992). Composite materials with Poisson’s ratios close to −1. J. Mech. Phys. Solids., 40:1105–1137.zbMATHMathSciNetCrossRefADSGoogle Scholar
  19. Milton, G. W. and Cherkaev, A. V. (1995). Which elasticity tensors are realizable? ASME J. Eng. Mat. Tech., 117:483–493.CrossRefGoogle Scholar
  20. Milton, G. W. and Serkov, S. K. (2000). Bounding the current in nonlinear conducting composites. J. Mech. Phys. Solids, 48:1295–1324.MathSciNetzbMATHCrossRefADSGoogle Scholar
  21. Murat, F. and Tartar, L. (1985). Les méthodes de l’homogénéisation: théorie et applications en physique, volume 57 of Collection de la Direction des études et recherches d’Électricité de France, pages 319–370. Eyrolles, Paris.Google Scholar
  22. Ponte Castañeda, P. and Suquet, P. (1998). Nonlinear composites. Adv. Appl. Mech., 34:171–302.CrossRefGoogle Scholar
  23. Sigmund, O. and Torquato, S. (1996). Composites with extremal thermal expansion coefficients. Appl. Phys. Lett., 69:3203–3205.CrossRefADSGoogle Scholar
  24. Sigmund, O. and Torquato, S. (1997). Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids, 45:1037–1067.MathSciNetCrossRefADSGoogle Scholar
  25. Solna, K. and Milton, G. W. (2000a). Bounds for the group velocity of electromagnetic signals in two phase materials. Physica B, 279:9–12.ADSCrossRefGoogle Scholar
  26. Solna, K. and Milton, G. W. (2000b). Can mixing materials make electromagnetic signals travel faster? In preparation.Google Scholar
  27. Tartar, L. (1979). Computing methods in applied sciences and engineering: Third International Symposium Versailles, France, December 5–9, 1977, volume 704 of Lecture notes in mathematics, pages 364–373. Springer-Verlag, Berlin.Google Scholar
  28. Wiener, O. (1912). Die theorie des mischkörpers für das feld des stationären strömung. erste abhandlung die mittelswertsätze für kraft, polarisation und energie. Abhandlungen der mathematisch-physischen Klasse der Königlich Sächisischen Gesellschaft der Wissenschaften, 32:509–604.Google Scholar
  29. Wood, A. W. (1955). A textbook of sound, page 360. Bell, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • G. W. Milton
    • 1
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations