Skip to main content

Computer Simulation of Nonisothermal Elastoplastic Shell Responses

  • Chapter
Advances in the Mechanics of Plates and Shells

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 88))

  • 555 Accesses

Abstract

Shell structures are extremly efficient, thin walled load-carrying components, in the elastic as well as in the inelastic regime. Realistic and efficient computational strategies lately are in rapid development. Such computational strategy for modelling of nonisothermal, highly nonlinear hardening responses in elastoplastic shell analysis has been proposed in this article. Therein, the closest point projection algorithm employing the Reissner-Mindlin type kinematic model, completely formulated in tensor notation, is applied. A consistent elastoplastic tangent modulus ensures high convergence rates in the global iteration approach. The integration algorithm has been implemented into a layered assumed strain isoparametric finite shell element, which is capable of geometrical nonlinearities including finite rotations. Under the assumption of an adiabatic process, the increase of the temperature is analysed during elastoplastic deformation. Finally, numerical examples illustrate robustness and efficiency of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, P.J. and Frederick, C.O.: A mathematical representation of the multiaxial Bauschinger effect, GEGB Report No. RD/B/N73 1, Berceley Nuclear Laboratories, 1966.

    Google Scholar 

  2. Basar, Y. and Krätzig, W.B.: Mechanik der Flächentragwerke, Vieweg, Braunschweig, 1985.

    Google Scholar 

  3. Basar, Y., Montag, U. and Ding Y.: On an isoparametric finite element for composite laminates with finite rotations, Comp. Mech. 12 (1993), 329–348.

    Article  Google Scholar 

  4. Beem, H., KÖnke, C., Montag, U. and Zahlten, W.: FEMAS 2000-Finite Element Moduls of Arbitrary Structures, Users Manual, Institute for Statics and Dynamics, Ruhr-University Bochum, 1996.

    Google Scholar 

  5. Chaboche, J.L.: Time-independent constitutive theories for cyclic plasticity, Int. J. Plast. 2 (1986), 149–188.

    Article  MATH  Google Scholar 

  6. Doghri, I.: Fully implicit integration and consistent tangent modulus in elasto-plasticity, Int. J. Numer. Meth. Engng. 36 (1993), 3915–3932.

    Article  MATH  Google Scholar 

  7. Hartmann, S. and Haupt, P.: Stress computation and consistent tangent operator using non-linear kinematic hardening models, Int. J. Numer. Meth. Engng. 36 (1993), 3801–3814.

    Article  Google Scholar 

  8. Hopperstad, O.S. and Remseth S.: A return mapping algorithm for a class of cyclic plasticity models, Int. J. Numer. Meth. Engng. 38 (1995), 549–564.

    Article  Google Scholar 

  9. Krätzig, W.B.: Multi-level modeling techniques for elasto-plastic structural responses, in: Owen, D.R.J. et al. (eds.), Computational Plasticity, Part 1, CIMNE, Barcelona (1997), 457–468.

    Google Scholar 

  10. Lehmann, Th.: On a generalized constitutive law for finite deformations in thermo-plasticity and thermoviscoplasticity, in: Desai, C.S. et al. (eds.), Constitutive Laws for Engineering Materials, Theory and Applications, Elsevier, New York (1987), 173–184.

    Google Scholar 

  11. Libai, A. and Simmonds, J.G.: Nonlinear elastic shell theory, Adv. Appl. Mechanics 23 (1983), 271–371.

    Google Scholar 

  12. Libai, A. and Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd ed., Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  13. McDowell, D.L.: A nonlinear kinematic hardening theory for cyclic thermoplasticity and thermoviscoplasticity, Int. J. Plast. 8 (1992), 695–728.

    Article  MATH  Google Scholar 

  14. Montag, U., Krätzig, W.B. and Sorić, J.: On stable numerical simulation strategies for elastoplastic deformation processes of shell structures, in: Topping, B.H.V. (ed.), Advances in Computational Methods for Simulation, Civil-Comp Press, Edinburgh (1996), 61–71.

    Google Scholar 

  15. Montag, U., Krätzig, W.B. and Sorić, J.: Increasing solution stability for finite-element modeling of elasto-plastic shell response, Adv. Engg. Sofware 30 (1999), 607–619.

    Google Scholar 

  16. Reid, S.R.: Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers, Int. J. Mech. Sci. 35 (1993), 1035–1052.

    Google Scholar 

  17. Simo, J.C. and Hughes, T.J.R.: Computational Inelasticity, Springer, New York, 1998.

    Google Scholar 

  18. Sorić, J., Montag, U. and Krätzig, W.B.: An efficient formulation of integration algorithms for elastoplastic shell analyses based on layered finite element approach, Comp. Meth. Appl. Mech. Eng. 148 (1997), 315–328.

    Google Scholar 

  19. Sorić, J., Tonković, 2. and Krätzig, W.B.: On numerical simulation of cyclic elastoplastic deformation processes of shell structures, in: Topping, B.H.V. (ed.), Advances in Finite Element Procedures and Techniques, Civil-Comp Press, Edinburgh (1998), 221–228.

    Google Scholar 

  20. Szepan, F.: Ein elastisch-viskoplastisches Stoffgesetz zur Beschreibung gro ß er Formanderungen unter Berücksichtigung der thermomechanischen Kopplung (An elasto-plastic constitutive law for mild steel under large deformations and thermo-mechanical coupling), IfM 70, Institute for Applied Mechanics, Ruhr-University Bochum, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Krätzig, W.B., Montag, U., Sorić, J., Tonković, Z. (2001). Computer Simulation of Nonisothermal Elastoplastic Shell Responses. In: Durban, D., Givoli, D., Simmonds, J.G. (eds) Advances in the Mechanics of Plates and Shells. Solid Mechanics and its Applications, vol 88. Springer, Dordrecht. https://doi.org/10.1007/0-306-46954-5_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-46954-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6785-7

  • Online ISBN: 978-0-306-46954-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics