Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 84))

  • 560 Accesses

Abstract

A two-phase epilayer on a substrate may exhibit intriguing behaviors. The phases may select stable sizes, say on the order of 10 nm. The phases sometimes order into a periodic pattern, such as alternating stripes or a lattice of disks. The patterns may be stable on annealing. This paper describes an irreversible thermodynamic model that accounts for these behaviors. The phase boundary energy drives phase coarsening. The concentration-dependent surface stress drives phase refining. Their competition may stabilize nanoscopic phases and periodic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alerhand, O.L., Vanderbilt, D., Meade, R.D., and Joannopoulos, J.D. (1988) Spontaneous formation of stress domains on crystal surfaces. Phys. Rev. Lett. 61, 1973–1976.

    Article  ADS  Google Scholar 

  • Ball, P. (1999) The Self-Made Tapestry, Oxford University Press, UK.

    MATH  Google Scholar 

  • Biot, M.A. (1970) Variational Principles in Heat Transfer, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Bower, A.F. and Craft, D. (1998) Analysis of failure mechanisms in the interconnect lines of microelectronic circuits. Fatigue Fracture Engineering Materials Structure 21, 611–630.

    Article  Google Scholar 

  • Cahn, J.W. (1961) On spinodal decomposition. Acta Metall. 9, 795–801.

    Article  Google Scholar 

  • Cahn, J.W. (1980) Surface stress and the chemical equilibrium of small crystals—I. the case of the isotropic surface. Acta Metall. 28, 1333–1338.

    Article  Google Scholar 

  • Cahn, J.W. and Hilliard, J.E. (1958) Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28, 258–267.

    Article  ADS  Google Scholar 

  • Carter, W.C., Taylor, J.E., and Cahn, J.W. (1997) Variational methods for microstructural-evolution theories. JOM, 49, No. 12, pp.30–36.

    Article  ADS  Google Scholar 

  • Cammarata, R.C. (1994) Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38.

    Article  ADS  Google Scholar 

  • Cammarata, R.C. and Sieradzki K. (1994) Surface and interface stresses. Annu. Rev. Mater. Sci. 24, 215–234.

    Article  ADS  Google Scholar 

  • Chen, L.-Q. and Khachaturyan A.G. (1993) Dynamics of simultaneous ordering and phase separation and effect of long-range coulomb interactions. Phys. Rev. Lett. 70, 1477–11480.

    Article  ADS  Google Scholar 

  • Chen, L.-Q. and Shen J. (1998) Applications of semi-implicit Fourier-spectral method to phase field equations. Computer Physics Communications 108, 14–158.

    Article  Google Scholar 

  • Chen, L.-Q. and Wang, Y. (1996) The continuum field approach to modeling microstructural evolution. JOM, Vol. 48, No. 12, pp.13–18.

    Google Scholar 

  • Chuang, T.-J., Kagawa, K-I., Rice, J.R., and Sills, L.B. (1979) Non-equilibrium models for diffusive cavitation of grain interfaces. Acta. Metall. 27, 265–284.

    Article  Google Scholar 

  • Chuang, T.-J. and Rice, J.R. (1973) The shape of intergranular creep cracks growing by surface diffusion. Acta. Metall. 21, 1625–1628.

    Article  Google Scholar 

  • Cocks, A.C.F., Gill, S.P.A., and Pan, J. (1999) Modeling microstructure evolution in engineering materials. Advances in Applied Mechanics, 36, 81–162.

    Article  Google Scholar 

  • Freund, L.B. (1995) Evolution of waviness on the surface of a strained elastic solid due to stress-driven diffusion. Int. J. Solids Structures 32, 911–923.

    Article  MATH  Google Scholar 

  • Freund, L.B. (1998) A surface chemical potential for elastic solids. J. Mech. Phys. Solids 46, 1835–1844.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Freund, L.B. (2000) The mechanics of electronic materials. Int. J. Solids Structures. 37, 185–196.

    Article  MATH  MathSciNet  Google Scholar 

  • Gao, H. (1994) Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure. J. Mech. Phys. Solids 42, 741–772.

    Article  MATH  ADS  Google Scholar 

  • Glas, F. (1997) Thermodynamics of a stressed alloy with a free surface: coupling between the morphological and compositional instabilities. Phys. Rev. B 55, 11277–11286.

    ADS  Google Scholar 

  • Gurtin, M.E. and Murdoch, A.I. (1975) A continuum theory of elastic material surface. Arch. Rat. Mech. Anal. 57, 291–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Guyer, J.E. and Voorhees, P.W. (1998) Morphological stability and compositional uniformity of alloy thin films. J. Crystal Growth 187, 150–165.

    Article  ADS  Google Scholar 

  • Herring, C. (1951) Surface tension as a motivation for sintering. The Physics of Powder Metallurgy, McGraw-Hill, editor Kingston, W.E., New York pp. 143–179.

    Google Scholar 

  • Hull, D. and Rimmer, D.E. (1959) The growth of grain-boundary voids under stress. Phil. Mag., 4, 673–687.

    Article  ADS  Google Scholar 

  • Ibach, H. (1997) The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 193–263.

    Article  ADS  Google Scholar 

  • Johnson, K.L. (1985) Contact Mechanics, Cambridge University Press, UK.

    MATH  Google Scholar 

  • Kern, K., Niebus, H., Schatz, A., Zeppenfeld, P., George, J., Comsa, G. (1991) Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces: Cu{110}-(2x1) O. Phys. Rev. Lett. 67, 855–858.

    Article  ADS  Google Scholar 

  • Khachaturyan, A.G. (1983) Theory of Structural Transformation in Solids, Wiley, New York.

    Google Scholar 

  • Li, D., Diercks, V., Pearson, J., Jiang, J.S., and Bader, S.D. (1999) Structural and magnetic studies of fcc Fe films with self-organized lateral modulation on striped Cu{110}-O(2x1) substrates. J. Appl. Phys. 85, 5285–5287.

    Article  ADS  Google Scholar 

  • Lu, W. and Suo, Z. (1999) Coarsening, refining, and pattern emergence in binary epilayers, the Fred Lange Festschrift in the journal Zeitschrift fur Metallkunde. In Press.

    Google Scholar 

  • McMeeking, R.M. and Kuhn, L.T. (1992) A diffusional creep law for powder compacts. Acta Metall. Mater. 40, 961–969.

    Article  Google Scholar 

  • Mullins, W.W. (1957) Theory of thermal grooving, J. Appl. Phys., 28, 333–339.

    Article  ADS  Google Scholar 

  • Needleman, A and Rice, J.R. (1980) Plastic creep flow effects in the diffusive cavitation of grain boundaries. Acta Metall. 28, 1315–1332.

    Article  Google Scholar 

  • Ng, K.-O. and Vanderbilt, D. (1995) Stability of periodic domain structures in a two dimensional dipolar model. Phys. Rev. B 52, 2177–2183.

    ADS  Google Scholar 

  • Pohl, K., Bartelt, M.C., de la Figuera, J., Bartelt, N.C., Hrbek, J., Hwang, R.Q. (1999) Identifying the forces responsible for self-organization of nanostructures at crystal surfaces. Nature 397, 238–241.

    Article  ADS  Google Scholar 

  • Pompe, W., Gong, X., Suo, Z. and Speck, J.S. (1993) Elastic energy release due to domain formation in the strained epitaxy of ferroelectric and ferroelastic films. J. Appl. Phys. 74, 6012–6019.

    Article  ADS  Google Scholar 

  • Prigogine, I. (1967) Introduction of Thermodynamics of Irreversible Processes, 3rd edition, Wiley, New York.

    Google Scholar 

  • Rayleigh, J.W.S. (1894) The Theory of Sound, Vol. 1, Art. 81. Reprinted by Dover, New York.

    Google Scholar 

  • Rice, J.R. and Chuang, T.-J. (1981) Energy variations in diffusive cavity growth. J. Am. Ceram. Soc. 64, 46–53.

    Article  Google Scholar 

  • Roytburd, A.L. (1993) Elastic domains and polydomain phases in solids. Phase Transitions, 45, 1–33.

    Article  Google Scholar 

  • Srolovitz, D.J. (1989) On the stability of surfaces of stressed solids. Acta Metall. 37, 621–625.

    Article  Google Scholar 

  • Suo, Z. (1997) Motions of microscopic surfaces in materials. Advances in Applied Mechanics. 33, 193–294.

    Article  MATH  Google Scholar 

  • Suo, Z. (1998) Stress and strain in ferroelectrics. Current Opinion in Solid State & Materials Sicence, 3, 486–489.

    Article  Google Scholar 

  • Suo, Z. (2000) Evolving materials structures of small feature sizes. Int. J. Solids Structures. 37, 367–378.

    Article  MATH  ADS  Google Scholar 

  • Suo, Z. and Lu, W. (2000) Composition modulation and nanophase separation in a binary epilayer, J. Mech. Phys. Solids. In press.

    Google Scholar 

  • Willis, J.R. and Bullough, R. (1969) The interaction of finite gas bubbles in a solid. J. Nuclear Mater. 32, 76–87.

    Article  ADS  Google Scholar 

  • Wu, C.H. (1996) The chemical potential for stress-driven surface diffusion. J. Mech. Phys. Solids 44, 2059–2077.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Suo, Z., Lu, W. (2000). Self-organizing Nanophases on a Solid Surface. In: Chuang, T.J., Rudnicki, J.W. (eds) Multiscale Deformation and Fracture in Materials and Structures. Solid Mechanics and Its Applications, vol 84. Springer, Dordrecht. https://doi.org/10.1007/0-306-46952-9_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-46952-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6718-5

  • Online ISBN: 978-0-306-46952-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics