Skip to main content

J-integral Applications to Characterization and Tailoring of Cementitious Materials

  • Chapter
Multiscale Deformation and Fracture in Materials and Structures

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 84))

  • 579 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barenblatt, G. I. (1962) The mathematical theory of equilibrium cracks in brittle fracture, Advanced Applied Mechanics 7, 55–125.

    Article  MathSciNet  Google Scholar 

  • Chong, K.P., Li, V.C., and Einstein, H.H. (1989) Size effects, process zone, and tension softening behavior in fracture of geomaterials, International J. of Engineering Fracture Mechanics 34(3), 669–678.

    Article  Google Scholar 

  • Cox, B. and Marshall, D. (1994) Concepts in the fracture and fatigue of bridged cracks, Overview No 111. Acta Meta. Mate. 42, 341–363.

    Article  Google Scholar 

  • Fischer, G. and Li, V.C. (2000) Structural composites with ECC, to appear in the Proceedings of the ASCCS-2000.

    Google Scholar 

  • Fukuyama, H., Y. Matsuzaki, K. Nakano, and Y. Sato (1999) Structural Performance of Beam Elements with PVA-ECC, in H. Reinhardt and A. Naaman (eds.), Proc. of High Performance Fiber Reinforced Cement Composites 3 (HPFRCC 3), Chapman & Hall, pp. 531–542.

    Google Scholar 

  • Halvorsen, G.T. (1980) J-integral study of steel fiber reinforced concrete, International J. Cement Composites, 2(1) 13–22.

    Google Scholar 

  • Hashida, T. (1990) Evaluation of fracture processes in granite based on the tension-softening model, In S.P. Shah, S.E. Swartz & M.L. Wang (eds), Micromechanics of Failure of Quasi-Brittle Materials, Elsevier Applied Science, London, 233–243.

    Google Scholar 

  • Hashida, T., Li, V.C., and Takahashi, H. (1994) New development of the J-based fracture testing technique for ceramic matrix composites, J. American Ceramic Society 77(6), 1553–1561.

    Article  Google Scholar 

  • Hillerborg, A. (1983) Analysis of One Single Crack, in F.H. Wittmann (ed.) Fracture Mechanics of Concrete, Elsevier Science Publisher, B.V., Amsterdam, pp. 223–250.

    Google Scholar 

  • Hillerborg, A., Modeer, M., and Petersson, P. E. (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6, 773–782.

    Article  Google Scholar 

  • Landes, J.D. and Begley, J.A. (1972) The Effect of Specimen Geometry on J IC, in Stress Analysis and Growth of Cracks, ASTM STP 514, ASTM, Philadelphia

    Google Scholar 

  • Leung, C.K.Y., and Li, V.C. (1989) Determination of fracture toughness parameter of quasi-brittle materials with laboratory-size specimens, J. Materials Science 24, 854–862.

    Article  ADS  Google Scholar 

  • Li, V.C. (1992) Post-crack scaling relations for fiber reinforced cementitious composites”, ASCE J. of Materials in Civil Engineering, 4(1), 41–57.

    Article  MATH  Google Scholar 

  • Li, V.C. (1998) Engineered Cementitious Composites-Tailored Composites Through Micromechanical Modeling, in N. Banthia, A. Bentur, A. and A. Mufti (eds.) Fiber Reinforced Concrete: Present and the Future, Canadian Society for Civil Engineering, Montreal, pp. 64–97.

    Google Scholar 

  • Li, V.C., Chan, C.M., and Leung, C.K.Y. (1987) Experimental determination of the tension-softening curve in cementitious composites, J. Cement and Concrete Research 17-3, 441–452.

    Article  Google Scholar 

  • Li, V.C. and Leung, C.K.Y. (1992) Steady state and multiple cracking of short random fiber composites, ASCE J. of Engineering Mechanics 118(11), 2246–2264.

    Article  Google Scholar 

  • Li, V.C. and Hashida, T. (1993) Engineering ductile fracture in brittle matrix composites, J. of Materials Science Letters 12, 898–901.

    Article  Google Scholar 

  • Li, V.C. and Kanda, T. (1998) Engineered cementitious composites for structural applications, ASCE J. Materials in Civil Engineering 10(2), 66–69.

    Article  Google Scholar 

  • Li, V.C. and Maalej, M. (1996a) Toughening in cement based composites, Part I: Cement, mortar and concrete, J. of Cement and Concrete Composites 18(4), 223–237.

    Article  Google Scholar 

  • Li, V.C. and Maalej, M. (1996b) Toughening in cement based composites, Part II: Fiber reinforced cementitious composites, J. of Cement and Concrete Composites 18(4), 239–249.

    Article  MATH  Google Scholar 

  • Li, V.C., Maalej, M., and Hashida, T. (1994) Experimental determination of stress-crack opening relation in fiber cementitious composites with crack tip singularity, J. Materials Science 29, 2719–2724.

    Article  ADS  Google Scholar 

  • Li, V.C., Mihashi, H., Wu, H.C., Alwan, J., Brincker, R., Horii, H., Leung, C., Maalej, M., and Stang, H. (1996) Micromechanical models of mechanical response of HPFRCC, in A.E. Naaman and H.W. Reinhardt (Eds.) High Performance Fiber Reinforced Cementitious Composites, RILEM Proceedings 31, pp. 43–100.

    Google Scholar 

  • Li, V.C. and Obla, K. (1996) Effect of fiber diameter variation on properties of cement based matrix fiber reinforced composites, Composites Engineering International Journal Part B 27B, 275–284.

    Google Scholar 

  • Li, V.C. and Ward, R. (1989) A novel testing technique for post-peak tensile behavior of cementitious materials, in H. Mihashi, H. Takahashi, and F.H. Wittmann (eds.) Fracture Toughness and Fracture Energy-Test Methods for Concrete and Rock, Balkema, Rotterdam, pp. 183–195.

    Google Scholar 

  • Li, V.C., Wang, Y., and Backer, S. (1990) Effect of inclining angle, bundling, and surface treatment on synthetic fiber pull-out from a cement matrix, J. Composites 21(2), 132–140.

    Article  Google Scholar 

  • Li, V.C. and Wu, H.C. (1992) Conditions for Pseudo strain-hardening in fiber reinforced brittle matrix composites, J. Applied Mechanics Review 45(8), 390–398.

    Article  MathSciNet  Google Scholar 

  • Li, V.C., Wu, H.C., and Chan, Y.W. (1996) Effect of plasma treatment of polyethylene fibers on interface and cementitious composite properties, J. of American Ceramics Society 79(3), 700–704.

    Article  Google Scholar 

  • Lin, Z. and Li, V.C. (1997) Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces, J. Mechanics and Physics of Solids 45(5), 763–787.

    Article  ADS  Google Scholar 

  • Maalej, M., Hashida, T., and Li, V.C. (1995a) Effect of fiber volume fraction on the off-crack-plane fracture energy in strain-hardening engineered cementitious composites, J. Amer. Ceramics Soc. 78(12), 3369–3375.

    Article  Google Scholar 

  • Maalej, M., Li, V.C., and Hashida, T. (1995b) Effect of fiber rupture on tensile properties of short fiber composites, ASCE J. Engineering Mechanics 121(8), 903–913.

    Article  Google Scholar 

  • Marshall, D.B. and Cox, B.N. (1988) A J-integral method for calculating steady-state Matrix Cracking Stresses in Composites, Mechanics of Materials 7, 127–133.

    Article  Google Scholar 

  • Mindess, S., Lawrence, Jr., F.V. and Kesler, C.E. (1977) The J-integral as a fracture criterion for fiber reinforced concrete, Cement and Concrete Research, 7, 731–742.

    Article  Google Scholar 

  • Parra-Montesinos, G.J., and J.K. Wight (2000) Behavior and Strength of RC Column-to-Steel Beam Connections Subjected to Seismic Loading, to appear in the Proceedings of the 12th WCEE.

    Google Scholar 

  • Petersson, P-E, (1981) Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials, Report TVBM-1006, Lund, Sweden, 174pp.

    Google Scholar 

  • Rice, J. R. (1968) A path-independent integral and the approximate analysis of strain concentration by notches and cracks. J. Applied Mechanics 35, 379.

    Google Scholar 

  • Rice, J.R. (1980) The mechanics of earthquake rupture, in A.M. Dziewonski and E. Boschi (eds.) Physics of the Earth’s Interior, Italian Physical Society/North Holland, Amsterdam.

    Google Scholar 

  • Rokugo, K., Iwasa, M., Seko, S., and Koyanagi, W. (1989) Tension-softening diagams of steel fiher reinforced concrete. In S.P. Shah, S.E. Swartz & B. Barr (eds.), Fracture of Concrete and Rock, Recent Developments, pp. 513–522.

    Google Scholar 

  • Teramura, S., Normura, N., Hashida, T., and Mihashi, H. (1990) Development of a core-based testing method for determining fracture energy and tension-softening relation of concrete, in S.P. Shah, S.E. Swartz and M. L. Wang (eds.), Micromechanics of Failure of Quasi-Brittle Materials, Elsevier Applied Science, London, pp. 463–473.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Li, V.C. (2000). J-integral Applications to Characterization and Tailoring of Cementitious Materials. In: Chuang, T.J., Rudnicki, J.W. (eds) Multiscale Deformation and Fracture in Materials and Structures. Solid Mechanics and Its Applications, vol 84. Springer, Dordrecht. https://doi.org/10.1007/0-306-46952-9_21

Download citation

  • DOI: https://doi.org/10.1007/0-306-46952-9_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6718-5

  • Online ISBN: 978-0-306-46952-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics