Skip to main content

Ab-initio Harmonic Analysis of Large-amplitude Motions in Ethanol Dimers

  • Chapter
New Trends in Quantum Systems in Chemistry and Physics

Abstract

At relatively low pressures, dimerization of ethanol yields three different structures trans-gauche, trans-trans and gauche-gauche, each of them with different minimum energy conformations. The energy differences among the stable structures are relatively low. All of them may be present in the same sample. Dimerization shifts the whole spectrum to higher frequencies. The six new intermolecular modes push up the remaining vibrational modes which become constrained by the presence of the second molecule. The normal modes involving the hydrogen bonded atoms show the largest vibrational shifts. Five of the additional modes lies below 100 cm−1 and confer some non-rigidity to the dimer. The harmonic fundamental of the hydrogen bond stretching is located at 173.6, 155.3 and 189.4 cm−1 for the different conformers of the trans-gauche structure, i.e., quite below the OH torsion thaf located at 305.7 cm−1 in the molecule and moves up to 700 cm−1 in the dimers. For the trans-trans and gauche-gauche, this transition lies at 164.8 and 188.7 cm−1 respectively. The pattern observed between 150 and 190 cm−1 may be assigned to this stretching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R Ludwog, F. Weinhold and T. C. Farrar, Mol. Phys., 97, 465 (1999).

    Google Scholar 

  2. R Ludwog, F. Weinhold and T. C. Farrar, Mol. Phys., 97, 479 (1999).

    Google Scholar 

  3. W.O. George, T. Has, M. F. Hossain, B. F. Jones and R Lewis, J. Chem. Soc, Faraday Trans., 94, 2701 (1998).

    Article  CAS  Google Scholar 

  4. M. Ehbrecht and F. Huiskeq, J. Chem. Phys. A, 101, 7768 (1997).

    Article  CAS  Google Scholar 

  5. J. R Dwig and R A. Larsen, J Mol. Struct., 238, 195 (1989).

    Google Scholar 

  6. J. P. Perchard and M. L. Josien, J. Chim. Phys., 65, 1834 (1968).

    CAS  Google Scholar 

  7. A. J. Barnes and H. E. Hallam, Trans. Faraday Soc., 66, 1932 (1970).

    CAS  Google Scholar 

  8. J. R Durig, W. E. Bucy, C. J. Wurrey and L. A. Carreka, J. Phys. Chem, 79, 988 (1975).

    CAS  Google Scholar 

  9. S. Coussan, Y. Bouteiller, J. P. Perchard and W. Q. Zheng, J. Phys. Chem., 102, 5789 (1998).

    CAS  Google Scholar 

  10. J. P. Perchard and M. L. Josien, J. Chim Phys., 65, 1856 (1968).

    CAS  Google Scholar 

  11. J. R Durig and C. W. Hawley, J. Phys. Chem., 75, 3993 (1971).

    CAS  Google Scholar 

  12. P. G. Jönsson, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 32, 232 (1976).

    Google Scholar 

  13. A. Anderson and W. Smith, Chem. Phys. Lett., 257, 143 (1996).

    CAS  Google Scholar 

  14. C. Talon, M.A. Ramos, S. Vieria, G.J. Cuello, F.J. Bermejo, A. Criado, M.L. Senent, S.M. Bennington, H. E. Fischer and H. Schober, Phys. Rev. B, 58, 745 (1998).

    CAS  Google Scholar 

  15. Y. Sasada, M. Takano and T. Satoh, J. Mol. Struct., 38, 33 (1971).

    CAS  Google Scholar 

  16. J. C. Pearson, K. V. L. N. Sastry, E. Herbst and F. C. de Lucia, J. Mol. Spectrosc., 175, 246 (1996).

    Article  CAS  Google Scholar 

  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R Gomperts, R L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian 94, Revision E.2, Gaussian, Inc., Pittsburgh PA, 1995.

    Google Scholar 

  18. D. E. Woon and T. H. Dunning Jr., J. Chem. Phys., 98 (1993) 98, 1358; R A. Kendal, T. H. Dunning, Jr and R J. Harrison, J. Chem. Phys., 96 (1992) 6796; T. H. Dunning, Jr, J. Chem. Phys., 90 (1989) 1007.

    Article  Google Scholar 

  19. C. H. Görbitz, J. Mol. Struct. (TEOCHEM), 262, 209 (1992).

    Google Scholar 

  20. A. Vivier-Bunge, V. H. Uc and Y. G. Smeyers, J. Chem. Phys., 109, 2279 (1998); Y. G. Smeyers, M. L. Senent, V. Botella and D. C. Mode, J. Chem. Phys., 98, 2754 (1993); M. L. Senent, D. C. Mode and Y. G. Smeyers, J. Chem. Phys., 102, 5952 (1995); M. L. Senent and Y. G. Smeyers, J. Chem. Phys., 105, 2789 (1996).

    Article  CAS  Google Scholar 

  21. M. L. Senent, J Mol. Spectrosc. 191, 265 (1998); M. L. Senent, Int. J. Quant. Chem., 399, 58 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Senent, M.L., Smeyers, Y.G., Domínguez-Gómez, R. (2001). Ab-initio Harmonic Analysis of Large-amplitude Motions in Ethanol Dimers. In: New Trends in Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/0-306-46951-0_19

Download citation

  • DOI: https://doi.org/10.1007/0-306-46951-0_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6708-6

  • Online ISBN: 978-0-306-46951-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics