Theoretical Study of the Interaction of Carbon Dioxide with Sc, Ti, Ni, and Cu Atoms

  • F. Mele
  • N. Russo
  • M. Toscano
  • F. Illas
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 7)


Density functional theory (DFT) using both gradient-corrected (PWP) and hybrid (B3LYP) functionals has been used to investigate the geometrical structures, harmonic vibrational frequencies and binding energies of the ScCO2, TiCO2, NiCO2, and CuCO2 systems. Eight possible coordination modes and the species produced by the insertion of the metal into the C-O bond have been considered. Results show that the interactions of copper and nickel atoms with CO2 are endothermic processes, while scandium and titanium are able to form stable complexes. In addition, we found that the Ti atom inserts spontaneously into the C-O bond while a barrier of 6.4 kcal/mol is required for Sc insertion.


Potential Energy Surface Coordination Mode B3LYP Level Harmonic Vibrational Frequency Insertion Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Keim (ed.) Catalysis in C1 Chemistry (Reidel, Dordrecht, 1983).Google Scholar
  2. 2.
    M. E. Vol’pin and l. S. Kolomnikov, PureAppl. Chem., 33 (1973) 567.Google Scholar
  3. 3.
    S. Inoue and N. Yamazaki (eds.) Organic and Bioinorganic Chemistry of Carbon Dioxide (Kodansha, Tokyo, 1982).Google Scholar
  4. 4.
    R. P. A. Sneeden, J. Mol. Catal., 17 (1982) 349.Google Scholar
  5. 5.
    A. W. Yau and H. O. Pritchard, Can. J. Chem., 57 (1979) 1731.Google Scholar
  6. 6.
    P. Braunstein, D. Matt and D. Nobel, Chem. Rev., 88 (1988) 747.CrossRefGoogle Scholar
  7. 7.
    A. Behr (eds.) Carbon Dioxide Activation by Metal Complexes (VCH, Berlin, 1988).Google Scholar
  8. 8.
    M. Aresta and J. V. Schloss (eds.) Enzymatic and Model Carboxylation and Reactions for Carbon Dioxide Utilization (Kluwer, Dordrecht, 1990).Google Scholar
  9. 9.
    H.-J. Freund and M. W. Roberts, Surf: Sci. Rep., 25 (1996) 1.CrossRefGoogle Scholar
  10. 10.
    E. W. Plummer, C. T. Chen, W. K. Ford, W Eberhardt, R. P. Messmer and H.-J. Freund, Surf. Sci., 158 (1985) 58.CrossRefGoogle Scholar
  11. 11.
    D. A. Palmer and R. Van Eldik, Chem. Rev., 83 (1983) 651.CrossRefGoogle Scholar
  12. 12.
    P. G. Jessop, T. Ikariya and R. Noyori, Chem. Rev., 95 (1995) 259.CrossRefGoogle Scholar
  13. 13.
    S. Sakala and A. Dedieu, Inorg. Chem., 26 (1987) 3278.Google Scholar
  14. 14.
    H.-J. Freund and R. P. Messmer, Surf Sci., 172 (1986) 1.CrossRefGoogle Scholar
  15. 15.
    G. H. Jeung, Chem. Phys. Lett., 232 (1995) 319.CrossRefGoogle Scholar
  16. 16.
    D. R. Salahub and N. Russo (eds.) Metal Ligand Interaction. From Atoms to Clusters to Surfaces (Kluwer, Dordrecht, 1992).Google Scholar
  17. 17.
    H. Huber, D. McIntosh and G. A. Ozin, Inorg. Chem., 16 (1977) 975.Google Scholar
  18. 18.
    G. A. Ozin, H. Huber and D. McIntosh, Inorg. Chem., 17 (1978) 1472.Google Scholar
  19. 19.
    J. Mascetti and M. Tranquille, J Phys. Chem., 92 (1988) 2177.CrossRefGoogle Scholar
  20. 20.
    F. Galan, M. Fouassier, M. Tranquille and J. Mascetti, J. Phys. Chem., 101 (1997) 2626.Google Scholar
  21. 21.
    M. Sodupe, V. Branchadell and A. Oliva, J. Phys. Chem., 99 (1995) 8567.CrossRefGoogle Scholar
  22. 22.
    L. Rodriguez-Santiago, M. Sodupe and V. Branchadell. J. Chem. Phys., 105 (1996) 9966.Google Scholar
  23. 23.
    G. H. Jeung, Mol. Phys., 65 (1988) 669.Google Scholar
  24. 24.
    R Caballol, E. Sanchez Marcos and J. Barthelat, J. Phys. Chem., 91 (1987) 1328.CrossRefGoogle Scholar
  25. 25.
    S. Sirois, M. Castro and D. R. Salahub, Int. J. Quantum Chem., S28 (1994) 645.Google Scholar
  26. 26.
    I. Papai, J. Mascetti and R. Fournier, J. Phys. Chem., 101 (1997) 4465.Google Scholar
  27. 27.
    G. H. Jeung, Mol. Phys., 67 (1989) 747.Google Scholar
  28. 28.
    Y. Yoshioka and K. Jordan, Chem. Phys. Lett., 84 (1981) 370.CrossRefGoogle Scholar
  29. 29.
    K. Jordan, J. Phys. Chem., 88 (1984) 2459.CrossRefGoogle Scholar
  30. 30.
    J. Bentley and I. J. Carmichael, J. Phys. Chem., 89 (1985) 4040.CrossRefGoogle Scholar
  31. 31.
    F. Ramondo, N. Sanna, L. Bencivenni and F. Grandinetti, Chem. Phys. Lett., 180 (1991) 369.CrossRefGoogle Scholar
  32. 32.
    F. Moscardo and E. San-Fabian, Theor. Chim. Acta, 70 (1986) 297.Google Scholar
  33. 33.
    F. Mele, N. Russo and F. Illas, Chem. Phys. Lett., 295 (1998) 409.CrossRefGoogle Scholar
  34. 34.
    J. P. Perdew and Y. Wang, Phys. Rev. B, 33 (1986) 8800.Google Scholar
  35. 35.
    J. P. Perdew, Phys. Rev. B, 33 (1986) 8822.Google Scholar
  36. 36.
    A. D. Becke, J. Chem. Phys., 98 (1993) 5648.Google Scholar
  37. 37.
    C. Lee, W. Yang and R G. Parr, Phys. Rev. B, 37 (1988) 785.Google Scholar
  38. 38.
    A. St. Amant, PhD Thesis, Université de Montreal, 1992.Google Scholar
  39. 39.
    C. C. Broyden, J. Inst. Math. Appl., 6 (1970) 76; R. Fletcher, Comput. J., 13 (1970) 317; D Goldfarb, Math. Comput., 24 (1970) 23; D. F. Shanno, Math. Comput., 24 (1970) 647.Google Scholar
  40. 40.
    Y. Abaskin and N. Russo, J. Chem. Phys., 100 (1994) 4477.Google Scholar
  41. 41.
    N. Godbout, D. R. Salahub, J. Andzelm and E. Wimmer, Can. J. Chem. 70, (1992) 560.Google Scholar
  42. 42.
    A. Piluso, A. Goursot and D. R. Salahub, Inorg. Chem., 29 (1990) 1545.Google Scholar
  43. 43.
    V. Musolino, N. Russo and M. Toscano, Phys. Lett., 165A (1992) 377.Google Scholar
  44. 44.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andreas, E. S. Reploge, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales, J. A. Pople (1995) Gaussian, Inc., Pittsburg, PA.Google Scholar
  45. 45.
    P. J. Hay and W. R. Wadt, J. Chem. Phys., 82 (1985) 270; 284; 299.Google Scholar
  46. 46.
    A. Martinez, A. M. Köster and D. R. Salahub, J. Phys. Chem. A, 101 (1997) 1532.Google Scholar
  47. 47.
    N. Russo and D. R. Salahub (eds.) Metal Ligand Interaction: Structure and Reactivity (Kluwer, Dordrecht, 1995).Google Scholar
  48. 48.
    T. Ziegler, Chem. Rev., 91 (1990) 651.Google Scholar
  49. 49.
    D. P. Chong (ed.) Recent Advances in Density Functional Methods. Parts I and II (World Scientific, Singapore, 1995 and 1997).Google Scholar
  50. 50.
    G. V. Chertihin and A. Andrews, J. Am. Chem. Soc., 117 (1995) 1595.Google Scholar
  51. 51.
    V. Barone, R. Fournier, F. Mele, N. Russo and C. Adamo, Chem. Phys. Lett., 237 (1995) 189.CrossRefGoogle Scholar
  52. 52.
    F. Mele, N. Russo, M. Toscano and J. Rubio, J. Mol. Struct. THEOCHEM, in press.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • F. Mele
    • 1
  • N. Russo
    • 1
  • M. Toscano
    • 1
  • F. Illas
    • 2
  1. 1.Dipartimento di ChimicaUniversita della CalabriaArcavacata di Rende (CS)Italy
  2. 2.Department de Quimica Fisica i Centre de Recerca en Quimica Teorica, Facultat de QuimicaUniversitad de BarcelonaBarcelonaSpain

Personalised recommendations