Skip to main content

Theoretical Study of the Interaction of Carbon Dioxide with Sc, Ti, Ni, and Cu Atoms

  • Chapter
  • 210 Accesses

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 7))

Abstract

Density functional theory (DFT) using both gradient-corrected (PWP) and hybrid (B3LYP) functionals has been used to investigate the geometrical structures, harmonic vibrational frequencies and binding energies of the ScCO2, TiCO2, NiCO2, and CuCO2 systems. Eight possible coordination modes and the species produced by the insertion of the metal into the C-O bond have been considered. Results show that the interactions of copper and nickel atoms with CO2 are endothermic processes, while scandium and titanium are able to form stable complexes. In addition, we found that the Ti atom inserts spontaneously into the C-O bond while a barrier of 6.4 kcal/mol is required for Sc insertion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Keim (ed.) Catalysis in C 1 Chemistry (Reidel, Dordrecht, 1983).

    Google Scholar 

  2. M. E. Vol’pin and l. S. Kolomnikov, PureAppl. Chem., 33 (1973) 567.

    CAS  Google Scholar 

  3. S. Inoue and N. Yamazaki (eds.) Organic and Bioinorganic Chemistry of Carbon Dioxide (Kodansha, Tokyo, 1982).

    Google Scholar 

  4. R. P. A. Sneeden, J. Mol. Catal., 17 (1982) 349.

    CAS  Google Scholar 

  5. A. W. Yau and H. O. Pritchard, Can. J. Chem., 57 (1979) 1731.

    CAS  Google Scholar 

  6. P. Braunstein, D. Matt and D. Nobel, Chem. Rev., 88 (1988) 747.

    Article  CAS  Google Scholar 

  7. A. Behr (eds.) Carbon Dioxide Activation by Metal Complexes (VCH, Berlin, 1988).

    Google Scholar 

  8. M. Aresta and J. V. Schloss (eds.) Enzymatic and Model Carboxylation and Reactions for Carbon Dioxide Utilization (Kluwer, Dordrecht, 1990).

    Google Scholar 

  9. H.-J. Freund and M. W. Roberts, Surf: Sci. Rep., 25 (1996) 1.

    Article  Google Scholar 

  10. E. W. Plummer, C. T. Chen, W. K. Ford, W Eberhardt, R. P. Messmer and H.-J. Freund, Surf. Sci., 158 (1985) 58.

    Article  CAS  Google Scholar 

  11. D. A. Palmer and R. Van Eldik, Chem. Rev., 83 (1983) 651.

    Article  CAS  Google Scholar 

  12. P. G. Jessop, T. Ikariya and R. Noyori, Chem. Rev., 95 (1995) 259.

    Article  CAS  Google Scholar 

  13. S. Sakala and A. Dedieu, Inorg. Chem., 26 (1987) 3278.

    Google Scholar 

  14. H.-J. Freund and R. P. Messmer, Surf Sci., 172 (1986) 1.

    Article  CAS  Google Scholar 

  15. G. H. Jeung, Chem. Phys. Lett., 232 (1995) 319.

    Article  CAS  Google Scholar 

  16. D. R. Salahub and N. Russo (eds.) Metal Ligand Interaction. From Atoms to Clusters to Surfaces (Kluwer, Dordrecht, 1992).

    Google Scholar 

  17. H. Huber, D. McIntosh and G. A. Ozin, Inorg. Chem., 16 (1977) 975.

    CAS  Google Scholar 

  18. G. A. Ozin, H. Huber and D. McIntosh, Inorg. Chem., 17 (1978) 1472.

    CAS  Google Scholar 

  19. J. Mascetti and M. Tranquille, J Phys. Chem., 92 (1988) 2177.

    Article  CAS  Google Scholar 

  20. F. Galan, M. Fouassier, M. Tranquille and J. Mascetti, J. Phys. Chem., 101 (1997) 2626.

    CAS  Google Scholar 

  21. M. Sodupe, V. Branchadell and A. Oliva, J. Phys. Chem., 99 (1995) 8567.

    Article  CAS  Google Scholar 

  22. L. Rodriguez-Santiago, M. Sodupe and V. Branchadell. J. Chem. Phys., 105 (1996) 9966.

    CAS  Google Scholar 

  23. G. H. Jeung, Mol. Phys., 65 (1988) 669.

    CAS  Google Scholar 

  24. R Caballol, E. Sanchez Marcos and J. Barthelat, J. Phys. Chem., 91 (1987) 1328.

    Article  CAS  Google Scholar 

  25. S. Sirois, M. Castro and D. R. Salahub, Int. J. Quantum Chem., S28 (1994) 645.

    Google Scholar 

  26. I. Papai, J. Mascetti and R. Fournier, J. Phys. Chem., 101 (1997) 4465.

    CAS  Google Scholar 

  27. G. H. Jeung, Mol. Phys., 67 (1989) 747.

    CAS  Google Scholar 

  28. Y. Yoshioka and K. Jordan, Chem. Phys. Lett., 84 (1981) 370.

    Article  CAS  Google Scholar 

  29. K. Jordan, J. Phys. Chem., 88 (1984) 2459.

    Article  CAS  Google Scholar 

  30. J. Bentley and I. J. Carmichael, J. Phys. Chem., 89 (1985) 4040.

    Article  CAS  Google Scholar 

  31. F. Ramondo, N. Sanna, L. Bencivenni and F. Grandinetti, Chem. Phys. Lett., 180 (1991) 369.

    Article  CAS  Google Scholar 

  32. F. Moscardo and E. San-Fabian, Theor. Chim. Acta, 70 (1986) 297.

    CAS  Google Scholar 

  33. F. Mele, N. Russo and F. Illas, Chem. Phys. Lett., 295 (1998) 409.

    Article  CAS  Google Scholar 

  34. J. P. Perdew and Y. Wang, Phys. Rev. B, 33 (1986) 8800.

    Google Scholar 

  35. J. P. Perdew, Phys. Rev. B, 33 (1986) 8822.

    Google Scholar 

  36. A. D. Becke, J. Chem. Phys., 98 (1993) 5648.

    CAS  Google Scholar 

  37. C. Lee, W. Yang and R G. Parr, Phys. Rev. B, 37 (1988) 785.

    CAS  Google Scholar 

  38. A. St. Amant, PhD Thesis, Université de Montreal, 1992.

    Google Scholar 

  39. C. C. Broyden, J. Inst. Math. Appl., 6 (1970) 76; R. Fletcher, Comput. J., 13 (1970) 317; D Goldfarb, Math. Comput., 24 (1970) 23; D. F. Shanno, Math. Comput., 24 (1970) 647.

    Google Scholar 

  40. Y. Abaskin and N. Russo, J. Chem. Phys., 100 (1994) 4477.

    Google Scholar 

  41. N. Godbout, D. R. Salahub, J. Andzelm and E. Wimmer, Can. J. Chem. 70, (1992) 560.

    CAS  Google Scholar 

  42. A. Piluso, A. Goursot and D. R. Salahub, Inorg. Chem., 29 (1990) 1545.

    Google Scholar 

  43. V. Musolino, N. Russo and M. Toscano, Phys. Lett., 165A (1992) 377.

    Google Scholar 

  44. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andreas, E. S. Reploge, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales, J. A. Pople (1995) Gaussian, Inc., Pittsburg, PA.

    Google Scholar 

  45. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82 (1985) 270; 284; 299.

    CAS  Google Scholar 

  46. A. Martinez, A. M. Köster and D. R. Salahub, J. Phys. Chem. A, 101 (1997) 1532.

    CAS  Google Scholar 

  47. N. Russo and D. R. Salahub (eds.) Metal Ligand Interaction: Structure and Reactivity (Kluwer, Dordrecht, 1995).

    Google Scholar 

  48. T. Ziegler, Chem. Rev., 91 (1990) 651.

    Google Scholar 

  49. D. P. Chong (ed.) Recent Advances in Density Functional Methods. Parts I and II (World Scientific, Singapore, 1995 and 1997).

    Google Scholar 

  50. G. V. Chertihin and A. Andrews, J. Am. Chem. Soc., 117 (1995) 1595.

    CAS  Google Scholar 

  51. V. Barone, R. Fournier, F. Mele, N. Russo and C. Adamo, Chem. Phys. Lett., 237 (1995) 189.

    Article  CAS  Google Scholar 

  52. F. Mele, N. Russo, M. Toscano and J. Rubio, J. Mol. Struct. THEOCHEM, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mele, F., Russo, N., Toscano, M., Illas, F. (2000). Theoretical Study of the Interaction of Carbon Dioxide with Sc, Ti, Ni, and Cu Atoms. In: Maruani, J., Minot, C., McWeeny, R., Smeyers, Y.G., Wilson, S. (eds) New Trends in Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-46950-2_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-46950-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6709-3

  • Online ISBN: 978-0-306-46950-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics