Single and Double Electron Capture in Boron Collision Systems

  • M. C. Bacchus-Montabonel
  • P. Honvault
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 7)


Although single electron capture remains generally the main process in most ion-atom charge-transfer reactions, double and eventually multiple electron capture may be important in the understanding of such processes. An illustration of these mechanisms is presented on the example of the B2+ + H and B4+ + He collisions. A complete ab-initio molecular treatment of the potential energy curves and coupling matrix elements followed by a semiclassical collision dynamics has been performed for these systems. An adiabatic representation providing an unambiguous description of the molecular states has been used throughout this work. The results compare well to experimental data and improve markedly previous theoretical work.


Total Cross Section Electron Capture Potential Energy Curve Entry Channel Partial Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Honvault, P., and Bacchus-Montabonel, M.C. (1997) Mol. Phys. 91, 223.Google Scholar
  2. 2.
    Fritsch, W., and Lin, C.D. (1992) Phys. Rev. A 45, 6411.CrossRefGoogle Scholar
  3. 3.
    Hansen, J.P., and Taulbjerg, K. (1993) Phys. Rev. A 47, 2987.CrossRefGoogle Scholar
  4. 4.
    Bacchus-Montabonel, M.C. (1996) Phys. Rev. A 53, 3667.CrossRefGoogle Scholar
  5. 5.
    McCullough, R.W., Nutt, W.L., and Gilbody, H.B. (1979) J. Phys. B 12, 4159.CrossRefGoogle Scholar
  6. 6.
    Crandall, D.H., Phaneuf, R.A., and Meyer, F.W. (1979) Phys. Rev. A 19, 504.CrossRefGoogle Scholar
  7. 7.
    Goffe, T.V., Shah, M.B. and Gilbody, H.B. (1979) J Phys. B 12, 3763.CrossRefGoogle Scholar
  8. 8.
    Crothers, D.S.F., and Todd, N.R. (1980) J Phys. B 13, 547.Google Scholar
  9. 9.
    Huron, B., Malrieu, J.P. and Rancurel, P. (1973) J. Chem. Phys. 58, 5745.CrossRefGoogle Scholar
  10. 10.
    Fraija, F., Bacchus-Montabonel, M.C., and Gargaud, M. (1994) Z. Phys. D 29, 179.CrossRefGoogle Scholar
  11. 11.
    Chambaud, G., Millié, Ph., Ridard, J., and Lévy, B. (1979) J Phys. B 12, 221. Husinaga S. (1965) J. Chem. Phys. 42, 1293.CrossRefGoogle Scholar
  12. 12.
    Fraija, F., Allouche, A.R, and Bacchus-Montabonel, M.C. (1994) Phys. Rev. A 49, 272.CrossRefGoogle Scholar
  13. 13.
    Bash, S., and Stoner, J.O. (1975) Atomic Energy Levels and Grotrian Diagrams (North-Holland, Amsterdam).Google Scholar
  14. 14.
    Allan, R.J., Courbin, C., Salas P., and Wahnon, P. (1990) J Phys. B 23, L461.CrossRefGoogle Scholar
  15. 15.
    Errea, L.F., Mendez, L., and Riera, A. (1982) J. Phys. B 15, 101.CrossRefGoogle Scholar
  16. 16.
    Bacchus-Montabonel, M.C., and Fraija, F. (1994) Phys. Rev. A 49, 5108.CrossRefGoogle Scholar
  17. 17.
    Davis, B.F., and Chung, K.T. (1985) Phys. Rev. A 31, 3017; (1984) 29, 1878. Chung, K.T., and Bruch, R. (1983) Phys. Rev. A 28, 1418.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • M. C. Bacchus-Montabonel
    • 1
  • P. Honvault
    • 2
  1. 1.Laboratoire de Spectrométrie Ionique et MoléculaireCNRS et Université Lyon IVilleurbanne CedexFrance
  2. 2.Laboratoire PANSUniversité Rennes IRennes CedexFrance

Personalised recommendations