Theoretical Study of Regularities in Atomic and Molecular Spectral Properties

  • I. Martin
  • C. Lavin
  • E. Charro
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 7)


Regularities in the transition intensities along isoelectronic sequences, indi-vidual spectral series, and analogous transitions in homologous atomic and molecular systems are proving to be very useful in theoretical and experimental investigations of spectra, as well as for supplying additional data. We have tested such regularities in cal-culations performed mostly with the Quantum Defect Orbital method, both in its non-relativistic (QDO) and relativistic (RQDO) formulations. A brief summary of the under-lying theory for such regularities (and deviations from them) is given, followed by a number of numerical examples presented in tabular or graph form.


Oscillator Strength Analogous Transition Systematic Trend Molecular Spectrum Isoelectronic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fournier, K.B., Goldstein, W.H., Finkenthal, M., Bell, R.E., and Terry, J.L., J. Electron Spectroscopy and Related Phenomena 80 (1996) 283–295.Google Scholar
  2. 2.
    Träbert, E., Nuclear Instrumentation and Methods in Physics Research B 98 (1995) 10–16.Google Scholar
  3. 3.
    Hibbert, A,, Physica Scripta T65 (1996) 104–109.Google Scholar
  4. 4.
    Wiese, W. L., Physica Scripra T65 (1996) 188–191.Google Scholar
  5. 5.
    Wiese, W. L., and Kelleher, D. E., in P.J. Mohr and W.L. Wiese (eds.), Atomic and Molecular Data and Their Applications, NIST Special Publication 926, US Government Printing Office, Washington, DC, pp. 105–116, 1998.Google Scholar
  6. 6.
    Martín, I., and Karwowski, J., J. Physics B: Atomic, Molecular and Optical Physics 24 (1991) 1539–1545.Google Scholar
  7. 7.
    Karwowski, J., and Martín, I., Physical Review A 43 (1991) 432–4839.CrossRefGoogle Scholar
  8. 8.
    Simons, G., J. Chemical Physics 60 (1974) 645–651.Google Scholar
  9. 9.
    Martín, I., and Simons, G., J. Chemical Physics 62 (1975) 4799–4811.Google Scholar
  10. 10.
    Rudzikas, Z.: Theoretical Atomic Spectroscopy, Cambridge University Press, Cambridge, 1997.Google Scholar
  11. 11.
    Froese Ficher, C., in G.W.F. Drake (ed.): Atomic, Molecular. and Optical Physics Handbook, American Institute of Physics, Woodbury, New York, pp. 243–257: 1996.Google Scholar
  12. 12.
    Martín, W. C.; and Wiese, W.L., Physical Review A 13 (1976) 699–711.Google Scholar
  13. 13.
    Martín, I., Karwowski, J., Lavin; C., and Diercksen, G.H.F., Physica Scripta 44 (1991) 567–573.Google Scholar
  14. 14.
    Hibbert, A., Computational Physics Communications 9 (1975) 141–165.Google Scholar
  15. 15.
    Hibbert, A., unpublished (1999).Google Scholar
  16. 16.
    Dyall, K.G., Grant, I.P., Johnson, C.T., Parpia, F.A., and Plummer, E.P., Computational Physics Communications 55 (1989) 425–442.Google Scholar
  17. 17.
    Anders, E., and Grevesse, F., Geochimica and Cosinochimica Acta 53 (1989) 197–205.Google Scholar
  18. 18.
    Verner, D.A., Verner, E.M., and Ferland, G.J., Atomic Datu and Nuclear Data Tables 64 (1996) 1–165.Google Scholar
  19. 19.
    Mori, K., Otsuka, M., and Kato, T., Atomic Data and Nuclear Data Tables 23 (1979) 1–172.CrossRefGoogle Scholar
  20. 20.
    Wigner, E., Physik Zeistchrift 32 (1931) 450–456.Google Scholar
  21. 21.
    Kirkwood, J.G., Physik Zeistchrift 33 (1932) 521–534.Google Scholar
  22. 22.
    Weiss, A.W., J. Quantitative Spectroscopy and Radiative Transfer 18, (1977) 481–496.Google Scholar
  23. 23.
    Martin, W. C., and Wiese, W.L., in G.W.F. Drake (ed.), Atomic, Molecular, and Optical Physics Handbook, American Institute of Physics, Woodbury, New York, pp. 135.153, (1996).Google Scholar
  24. 24.
    Martín, I., Lavín, C., and Karwowski, J., Chemical Physics Letters 255 (1996) 89–93.Google Scholar
  25. 25.
    Herzberg, G., Ann. Rev. Physics. Chem. 38 (1987) 27.Google Scholar
  26. 26.
    Merkt, F., Annals of Review of Physical Chemistry 48 (1997) 675–694.Google Scholar
  27. 27.
    Petsalakis, I.D., Theodorakopoulos, G., Wright, J.S., and Hamilton, I.P., J. Chemical Physics 88 (1988) 7633–7638.CrossRefGoogle Scholar
  28. 28.
    Jungen, Ch, Roche, A.L., and Arif, M., Philosophical Transactions from the Royal Society London A 355 (1977) 1475–1490.Google Scholar
  29. 29.
    Martín, I., and Simons, G., Molecular Physics 32 (1976) 1017–1022.Google Scholar
  30. 30.
    Martin, I., Lavín, C., Velasco, A.M., Martin, M.O., Karwowski, J., and Diercksen, G.H.F., Chemical Physics 202 (1996) 307–315.CrossRefGoogle Scholar
  31. 31.
    Lavín, C., and Martín, I., Advances in Quantum Chemistry 28 (1997) 205–218.Google Scholar
  32. 32.
    Martín, I., Lavín, C., Pérez-Delgado, Y., Karwowski, J., and Diercksen, G.H.F., Advances in Quantum Chemistry 32 (1999) 181–196.Google Scholar
  33. 33.
    Martin, I., Pérez-Delgado, Y., and Lavín, C., Chemical Physics Letters 305 (1999) 178–186.CrossRefGoogle Scholar
  34. 34.
    Velasco, A.M., Martín, I., and Lavín, C., Chemical Physics Letters 264 (1997) 579–83.CrossRefGoogle Scholar
  35. 35.
    Raynor, S., and Herschbach, D.R., J. Physical Chemistry 86 (1982) 3592–3598.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • I. Martin
    • 1
  • C. Lavin
    • 1
  • E. Charro
    • 1
  1. 1.Departamento de Química Física, Facultad de CienciasUniversidad de ValladolidValladolidSpain

Personalised recommendations