Skip to main content

A Theoretical Study of Structure and Reactivity of Titanium Chlorides

  • Chapter
New Trends in Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 7))

Abstract

The study of various TiLn species (L=Cl, H, CH3) is a prerequisite for understanding the mechanism of the Ziegler-Natta reaction. The oxidation state of the titanium chloride active sites in the heterogeneous catalyst remains uncertain. The aim of this study is to provide better comprehension of the bonding in TiCln compounds and to compare their reactivity toward simple reactants in order to help investigating adsorption and catalysis. From DFT-GGA calculations we show that the increase in coordination of titanium shortens the TiCl bond, increasing their covalent component. The TiCl bond remains, however, very ionic and very strong. On the contrary, the TiH and TiC bonds are rather weak; this allows the titanium complexes to loose such ligands and thus form hydrocarbons. TiCl3 structures have unusual geometries that do not obey the Valence-Shell Electron-Pair Rules. Such deviations can be understood in terms of molecular orbital analysis. We also provide a topological description of the Electron Localisation Function (ELF) that explains the arrangement of the H atoms in terms of the ligand field around the titanium atom. Lewis bases and Cl radicals react at the Ti centre, TiCl3 being the most reactive structure. Lewis acids and H and CH3 radicals react with the ligand, initiating their abstraction; then, the products remain in high spin states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardi, F., Bottini, A. and Miscione, G. P. (1998) Organometallics, 17, 16–24.

    Article  CAS  Google Scholar 

  2. Cossee, P. (1966) Recl. Trav. Chim. Phys-Bas, 85, 1151.

    CAS  Google Scholar 

  3. Axe, F. U. and Coffin, J. M. (1994) J. Phys. Chem., 98, 2567–2570.

    Article  CAS  Google Scholar 

  4. Yao, W., Eisenstein, O. and Crabtree, R. (1997) Inorganica Chimica Acta, 254, 105–111.

    Article  CAS  Google Scholar 

  5. DiDrusco, R. (1984) Hydrocarb. Proc., 113.

    Google Scholar 

  6. Giannini, U. (1981) Makromol. Chem. Suppli., 5, 216.

    CAS  Google Scholar 

  7. Galli, P., Barbé, P. C. and Noristi, L. (1984) Angew. Makromol. Chem., 120, 73.

    CAS  Google Scholar 

  8. Rinaldi, R. (1990) Chim. Industr. (Italy), 234, 3.

    Google Scholar 

  9. Magni, E. and Somorjai, G. A. (1995) Applied Surf Sci., 89, 187–195.

    CAS  Google Scholar 

  10. Magni, E. and Somorjai, G. A. (1995) Catal. Lett., 35, 205–214.

    Article  CAS  Google Scholar 

  11. Magni, E. and Somorjai, G. A. (1995) Surf. Sci., 341, L1078–L108.

    Article  CAS  Google Scholar 

  12. Magni, E. and Somorjai, G. A. (1996) Surf Sci., 345, 1–16.

    Article  CAS  Google Scholar 

  13. Magni, E. and Somorjai, G. A. (1996) J. Phys. Chem., 100, 14786–14793.

    Article  CAS  Google Scholar 

  14. Magni, E. and Somorjai, G. A. (1996) Phys. Rev. Lett., 77, 4717–4722.

    Google Scholar 

  15. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Gill, P. M. W., Johnson, B. G., Robb, M. A,, Cheeseman, J. R., Keith, T. A., Petterson, G. A., Montgomery, J. A., Raghavachari, K., Al-Laham, M. A., Zarzewski, V. G., Ortiz, J. V., Foresman, J. B., Cioslowski, J., Stefanov, B. R., Nanayakkara, A., Challacombe, M., Peng, C. Y., Ayala, P. Y., Chen, W., Won M. W., Andres, J. L., Reylogle, E. S., Gomperts, R., Martin, R L., Fox, D. J., Binkley, J. S., Defrees, D. J., Baker, J., Stewart, J. P., Head-Gordon, M., Gonzales, C. and Pople, J. A. (1995) GAUSSIAN 94-B.l, Gaussian Inc., Pittsburgh PA, USA.

    Google Scholar 

  16. Durand, P. and Barthelat, J. C. (1975) A theoretical Method to Determine Atomic Pseudopotentials for Electronic Structure Calculations of Molecules and Solids Theor. Chim. Acta, 38, 283–302.

    Article  CAS  Google Scholar 

  17. Fahmi, A. and Minot, C. (1993) A theoretical investigation of the water adsorption on titanium didoxide surfaces Surf Science, 304, 343–359.

    Google Scholar 

  18. Fahmi, A,, Minot, C., Silvi, B. and Causa, M. (1993) Theoretical analysis of the structures of titanium dioxide crystals Phys. Rev. B, 47, 11717–11724.

    Article  CAS  Google Scholar 

  19. Bouteiller, Y., Mijoule, C., Nizam, M., Barthelat, J. C., Daudey, J. P., Pelissier, M. and Silvi, B. (1988) Extended gaussian-type valence basis sets for calculations involving non-empirical core pseudopotentials Mol. Phys., 65, 295.

    CAS  Google Scholar 

  20. Perdew, J. P. and Wang, Y. (1992) Phys. Reo. B, 45, 13244.

    Google Scholar 

  21. Dovesi, R., Sanders, V. R. and Roetti, C. (1996) Crystal 95 User Documentation, University of Torino and SERC Daresbury Laboratory.

    Google Scholar 

  22. Dargelos, A. private communication.

    Google Scholar 

  23. Lister, M. W. and Sutton, L. E. (1941) Trans. Faraday Soc., 37, 393–406.

    CAS  Google Scholar 

  24. Kudo, T. and Gordon, M. S. (1995) Molecular and electronic structure of TiH2 J. Chem. Phys., 102, 6806–6611.

    Article  CAS  Google Scholar 

  25. Sousa, C. and Illas, F. (1994) Ionic-Covalent transition in titanium oxides Phys. Rev. B, 50, 13974–13980.

    Article  CAS  Google Scholar 

  26. Gillespie, R. and Hargittai, 1. The VSEPR Model of Molecular Geometry; (A. A. Bacon), Boston, MA (1991).

    Google Scholar 

  27. Gillespie, R. (1992) J. Chem. Soc. Rev., 59.

    Google Scholar 

  28. Jolly, C. A. and Marynick, D. S. (1989) Ground-state geometries and inversion barriers for simple complexes of early transition metals Inorg. Chem., 2893.

    Google Scholar 

  29. Jolly, C. A. and Marynick, D. S. (1989) The direct insertion Mechanism in Z-N polymerisation J. Amer. Chem. Soc., 111, 7968–7974.

    Article  CAS  Google Scholar 

  30. Gillespie, R., Bytheway, I., Tang, T. H. and Bader, R. F. W. (1996) Inorg. Chem., 35, 3954–3963.

    Article  CAS  Google Scholar 

  31. Bader, R. F. W. Atoms in molecules: A Quantum Theory. Oxford Univ. Press, Oxford (1990).

    Google Scholar 

  32. Becke, A. D. and Edgecombe, K. E. (1990) J. Chem. Phys., 92, 5397.

    CAS  Google Scholar 

  33. Savin, A., Jepsen, O., Flad, J., Andersen, O. K., Preuss, H. and vonSchnering, H. G. (1992) Angew. Chem. Int. Ed. Engl., 31, 187.

    Google Scholar 

  34. Savin, A., Becke, A. D., Flad, J., Nesper, R., Preuss, H. and von Schnering, H. G. (1991) Angew. Chem. Int. Ed. Engl, 30, 409.

    Article  Google Scholar 

  35. Silvi, B. and Savin, A. (1994) Nature, 371, 683.

    Article  CAS  Google Scholar 

  36. Silvi, B., Savin, A. and Colonna, F. (1996) Can. J. Chem., 74, 1088.

    Google Scholar 

  37. von Weizsäcker, C. F. (1935) Z. Phys., 96, 431.

    Google Scholar 

  38. Noury, S., Colonna, F., Savin, A. and Silvi, B. (1998) J. Mol. Struct., 450, 59.

    Article  CAS  Google Scholar 

  39. Giannini, U., Giunchi, G., Albizzati, E. and Barbé, P. C. Recent advances in Mechanistic and Synthetic Aspects of polymerisation Series C: vol 215; (M. Fontanille, A. Guyot and eds.), Reidel (1987).

    Google Scholar 

  40. Corradini, P., Barone, V., Fusco, R. and Guerra, G. (1983) A possible model of catalytic sites for the stereospecific polymerisation of alpha-olefins Gazzeta Chimica Italiana, 113, 601–607.

    CAS  Google Scholar 

  41. Herzler, J. and Roth, P. (1997) Shock tube Study of the reaction of H atoms with TiC14 J. Phys. Chem. A, 101, 9341–9343.

    CAS  Google Scholar 

  42. Wyckoff R. W. G. (1982) Crystal Structures 1, 269, Interscience, Wiley, N.Y.

    Google Scholar 

  43. Natta G., Corradini P., Allegra G. (1961) J. Polymer Sci. 51, 399–410.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Martinsky, C., Minot, C. (2000). A Theoretical Study of Structure and Reactivity of Titanium Chlorides. In: Maruani, J., Minot, C., McWeeny, R., Smeyers, Y.G., Wilson, S. (eds) New Trends in Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-46950-2_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-46950-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6709-3

  • Online ISBN: 978-0-306-46950-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics