A Theoretical Study of Structure and Reactivity of Titanium Chlorides

  • C. Martinsky
  • C. Minot
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 7)


The study of various TiLn species (L=Cl, H, CH3) is a prerequisite for understanding the mechanism of the Ziegler-Natta reaction. The oxidation state of the titanium chloride active sites in the heterogeneous catalyst remains uncertain. The aim of this study is to provide better comprehension of the bonding in TiCln compounds and to compare their reactivity toward simple reactants in order to help investigating adsorption and catalysis. From DFT-GGA calculations we show that the increase in coordination of titanium shortens the TiCl bond, increasing their covalent component. The TiCl bond remains, however, very ionic and very strong. On the contrary, the TiH and TiC bonds are rather weak; this allows the titanium complexes to loose such ligands and thus form hydrocarbons. TiCl3 structures have unusual geometries that do not obey the Valence-Shell Electron-Pair Rules. Such deviations can be understood in terms of molecular orbital analysis. We also provide a topological description of the Electron Localisation Function (ELF) that explains the arrangement of the H atoms in terms of the ligand field around the titanium atom. Lewis bases and Cl radicals react at the Ti centre, TiCl3 being the most reactive structure. Lewis acids and H and CH3 radicals react with the ligand, initiating their abstraction; then, the products remain in high spin states.


High Spin State Titanium Atom Electron Localisation Function Titanium Hydride Titanium Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernardi, F., Bottini, A. and Miscione, G. P. (1998) Organometallics, 17, 16–24.CrossRefGoogle Scholar
  2. 2.
    Cossee, P. (1966) Recl. Trav. Chim. Phys-Bas, 85, 1151.Google Scholar
  3. 3.
    Axe, F. U. and Coffin, J. M. (1994) J. Phys. Chem., 98, 2567–2570.CrossRefGoogle Scholar
  4. 4.
    Yao, W., Eisenstein, O. and Crabtree, R. (1997) Inorganica Chimica Acta, 254, 105–111.CrossRefGoogle Scholar
  5. 5.
    DiDrusco, R. (1984) Hydrocarb. Proc., 113.Google Scholar
  6. 6.
    Giannini, U. (1981) Makromol. Chem. Suppli., 5, 216.Google Scholar
  7. 7.
    Galli, P., Barbé, P. C. and Noristi, L. (1984) Angew. Makromol. Chem., 120, 73.Google Scholar
  8. 8.
    Rinaldi, R. (1990) Chim. Industr. (Italy), 234, 3.Google Scholar
  9. 9.
    Magni, E. and Somorjai, G. A. (1995) Applied Surf Sci., 89, 187–195.Google Scholar
  10. 10.
    Magni, E. and Somorjai, G. A. (1995) Catal. Lett., 35, 205–214.CrossRefGoogle Scholar
  11. 11.
    Magni, E. and Somorjai, G. A. (1995) Surf. Sci., 341, L1078–L108.CrossRefGoogle Scholar
  12. 12.
    Magni, E. and Somorjai, G. A. (1996) Surf Sci., 345, 1–16.CrossRefGoogle Scholar
  13. 13.
    Magni, E. and Somorjai, G. A. (1996) J. Phys. Chem., 100, 14786–14793.CrossRefGoogle Scholar
  14. 14.
    Magni, E. and Somorjai, G. A. (1996) Phys. Rev. Lett., 77, 4717–4722.Google Scholar
  15. 16.
    Frisch, M. J., Trucks, G. W., Schlegel, H. B., Gill, P. M. W., Johnson, B. G., Robb, M. A,, Cheeseman, J. R., Keith, T. A., Petterson, G. A., Montgomery, J. A., Raghavachari, K., Al-Laham, M. A., Zarzewski, V. G., Ortiz, J. V., Foresman, J. B., Cioslowski, J., Stefanov, B. R., Nanayakkara, A., Challacombe, M., Peng, C. Y., Ayala, P. Y., Chen, W., Won M. W., Andres, J. L., Reylogle, E. S., Gomperts, R., Martin, R L., Fox, D. J., Binkley, J. S., Defrees, D. J., Baker, J., Stewart, J. P., Head-Gordon, M., Gonzales, C. and Pople, J. A. (1995) GAUSSIAN 94-B.l, Gaussian Inc., Pittsburgh PA, USA.Google Scholar
  16. 17.
    Durand, P. and Barthelat, J. C. (1975) A theoretical Method to Determine Atomic Pseudopotentials for Electronic Structure Calculations of Molecules and Solids Theor. Chim. Acta, 38, 283–302.CrossRefGoogle Scholar
  17. 18.
    Fahmi, A. and Minot, C. (1993) A theoretical investigation of the water adsorption on titanium didoxide surfaces Surf Science, 304, 343–359.Google Scholar
  18. 19.
    Fahmi, A,, Minot, C., Silvi, B. and Causa, M. (1993) Theoretical analysis of the structures of titanium dioxide crystals Phys. Rev. B, 47, 11717–11724.CrossRefGoogle Scholar
  19. 20.
    Bouteiller, Y., Mijoule, C., Nizam, M., Barthelat, J. C., Daudey, J. P., Pelissier, M. and Silvi, B. (1988) Extended gaussian-type valence basis sets for calculations involving non-empirical core pseudopotentials Mol. Phys., 65, 295.Google Scholar
  20. 21.
    Perdew, J. P. and Wang, Y. (1992) Phys. Reo. B, 45, 13244.Google Scholar
  21. 22.
    Dovesi, R., Sanders, V. R. and Roetti, C. (1996) Crystal 95 User Documentation, University of Torino and SERC Daresbury Laboratory.Google Scholar
  22. 23.
    Dargelos, A. private communication.Google Scholar
  23. 24.
    Lister, M. W. and Sutton, L. E. (1941) Trans. Faraday Soc., 37, 393–406.Google Scholar
  24. 25.
    Kudo, T. and Gordon, M. S. (1995) Molecular and electronic structure of TiH2 J. Chem. Phys., 102, 6806–6611.CrossRefGoogle Scholar
  25. 26.
    Sousa, C. and Illas, F. (1994) Ionic-Covalent transition in titanium oxides Phys. Rev. B, 50, 13974–13980.CrossRefGoogle Scholar
  26. 27.
    Gillespie, R. and Hargittai, 1. The VSEPR Model of Molecular Geometry; (A. A. Bacon), Boston, MA (1991).Google Scholar
  27. 28.
    Gillespie, R. (1992) J. Chem. Soc. Rev., 59.Google Scholar
  28. 29.
    Jolly, C. A. and Marynick, D. S. (1989) Ground-state geometries and inversion barriers for simple complexes of early transition metals Inorg. Chem., 2893.Google Scholar
  29. 30.
    Jolly, C. A. and Marynick, D. S. (1989) The direct insertion Mechanism in Z-N polymerisation J. Amer. Chem. Soc., 111, 7968–7974.CrossRefGoogle Scholar
  30. 31.
    Gillespie, R., Bytheway, I., Tang, T. H. and Bader, R. F. W. (1996) Inorg. Chem., 35, 3954–3963.CrossRefGoogle Scholar
  31. 32.
    Bader, R. F. W. Atoms in molecules: A Quantum Theory. Oxford Univ. Press, Oxford (1990).Google Scholar
  32. 33.
    Becke, A. D. and Edgecombe, K. E. (1990) J. Chem. Phys., 92, 5397.Google Scholar
  33. 34.
    Savin, A., Jepsen, O., Flad, J., Andersen, O. K., Preuss, H. and vonSchnering, H. G. (1992) Angew. Chem. Int. Ed. Engl., 31, 187.Google Scholar
  34. 35.
    Savin, A., Becke, A. D., Flad, J., Nesper, R., Preuss, H. and von Schnering, H. G. (1991) Angew. Chem. Int. Ed. Engl, 30, 409.CrossRefGoogle Scholar
  35. 36.
    Silvi, B. and Savin, A. (1994) Nature, 371, 683.CrossRefGoogle Scholar
  36. 37.
    Silvi, B., Savin, A. and Colonna, F. (1996) Can. J. Chem., 74, 1088.Google Scholar
  37. 38.
    von Weizsäcker, C. F. (1935) Z. Phys., 96, 431.Google Scholar
  38. 39.
    Noury, S., Colonna, F., Savin, A. and Silvi, B. (1998) J. Mol. Struct., 450, 59.CrossRefGoogle Scholar
  39. 40.
    Giannini, U., Giunchi, G., Albizzati, E. and Barbé, P. C. Recent advances in Mechanistic and Synthetic Aspects of polymerisation Series C: vol 215; (M. Fontanille, A. Guyot and eds.), Reidel (1987).Google Scholar
  40. 41.
    Corradini, P., Barone, V., Fusco, R. and Guerra, G. (1983) A possible model of catalytic sites for the stereospecific polymerisation of alpha-olefins Gazzeta Chimica Italiana, 113, 601–607.Google Scholar
  41. 42.
    Herzler, J. and Roth, P. (1997) Shock tube Study of the reaction of H atoms with TiC14 J. Phys. Chem. A, 101, 9341–9343.Google Scholar
  42. 43.
    Wyckoff R. W. G. (1982) Crystal Structures 1, 269, Interscience, Wiley, N.Y.Google Scholar
  43. 44.
    Natta G., Corradini P., Allegra G. (1961) J. Polymer Sci. 51, 399–410.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • C. Martinsky
    • 1
  • C. Minot
    • 1
  1. 1.Laboratoire de Chimie Théorique, UMR 7616 CNRS, Boîte 137, Tour 23-22Université P. et M. CurieParis Cedex O5France

Personalised recommendations