Skip to main content

Simulation of Chemical Reactions in Solution Using an AB Initio Molecular Orbital-Valence Bond Model

  • Chapter
Theoretical Methods in Condensed Phase Chemistry

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 5))

Abstract

A mixed molecular orbital and valence bond (MOVB) method has been developed and applied to chemical reactions. In the MOVB method, a diabatic or valence bond (VB) state is defined with a block-localized wave function (BLW). Consequently, the adiabatic state can be described by the superposition of a set of critical adiabatic states. Test cases indicate the method is a viable alternative to the empirical valence bond (EVB) approach for defining solvent reaction coordinate in the combined quantum mechanical and molecular mechanical (QM/MM) simulations employing explicit molecular orbital methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warshel, A., Levitt, M. 1976. J. Mol. Biol. 103: 227

    Google Scholar 

  2. Singh, U. C., Kollman, P. A. 1986. J. Comput. Chem. 7: 718

    Google Scholar 

  3. Field, M. J., Bash, P., A., Karplus, M. 1990. J. Comput. Chem. 11: 700

    Google Scholar 

  4. Gao, J., Xia, X. 1992. Science. 258: 631

    Google Scholar 

  5. Gao, J. 1996. Acc. Chem. Res. 29: 298

    Google Scholar 

  6. Gao, J., Thompson, M. A. 1998. In ACS Symp. Ser., Vol. 712. Washington, DC: American Chemical Society

    Google Scholar 

  7. Alhambra, C., Wu, L., Zhang, Z.-Y., Gao, J. 1998. J. Am. Chem. Soc. 120: 3858

    Google Scholar 

  8. Hartsough, D. S., Merz, K. M., Jr. 1995. J. Phys. Chem. 99: 384

    Google Scholar 

  9. Merz, K. M., Jr., Banci, L. 1996. J. Phys. Chem. 100: 17414

    Google Scholar 

  10. Assfeld, X., Ferre, N., Rivail, J.-L. 1998. ACS Symp. Ser. 712: 234

    Google Scholar 

  11. Liu, H., Mueller-Plathe, F., van Gunsteren, W. F. 1996. J. Mol. Biol. 261: 454

    Google Scholar 

  12. Chatfield, D. C., Brooks, B. R. 1995. J. Am. Chem. Soc. 117: 5561

    Google Scholar 

  13. Alhambra, C., Gao, J., Corchado, J. C., Villa, J., Truhlar, D. G. 1999. J. Am. Chem. Soc. 121: 2253

    Google Scholar 

  14. Fukui, K. 1981. Acc. Chem. Res. 14: 363

    Google Scholar 

  15. Truhlar, D. G., Kuppermann, A. 1971. J. Am. Chem. Soc. 93: 1840

    Google Scholar 

  16. Miller, W. H., Handy, N. C., Adams, J. E. 1980. J. Chem. Phys. 72: 99

    Google Scholar 

  17. Warshel, A. 1991. Computer Modeling of Chemical Reactions in Enzymes and Solutions. New York: Wiley

    Google Scholar 

  18. Truhlar, D. G., Hase, W. L., Hynes, J. T. 1983. J. Phys. Chem. 87: 2664

    Google Scholar 

  19. Warshel, A., Weiss, R. M. 1980. J. Am. Chem. Soc. 102: 6218

    Google Scholar 

  20. Aaqvist, J., Warshel, A. 1993. Chem. Rev. (Washington, D. C.). 93: 2523

    Google Scholar 

  21. Chang, Y. T., Miller, W. H. 1990. J. Phys. Chem. 94: 5884

    Google Scholar 

  22. Kim, H. J., Hynes, J. T. 1990. J. Chem. Phys. 93: 5211

    Google Scholar 

  23. Hinsen, K., Roux, B. 1997. J. Chem. Phys. 106: 3567

    Google Scholar 

  24. Schmitt, U. W., Voth, G. A. 1998. J. Phys. Chem. B. 102: 5547

    Google Scholar 

  25. Vuilleumier, R., Borgis, D. 1998. Chem. Phys. Lett. 284: 71

    Google Scholar 

  26. Chang, Y.-T., Minichino, C., Miller, W. H. 1992. J. Chem. Phys. 96: 4341

    Google Scholar 

  27. Kim, Y., Corchado, J. C., Villa, J., Xing, J., Truhlar, D. G. 2000. Journal of Chemical Physics. 112: 2718

    Google Scholar 

  28. Mo, Y., Peyerimhoff, S. D. 1998. J. Chem. Phys. 109: 1687

    Google Scholar 

  29. Mo, Y., Zhang, Y., Gao, J. 1999. J. Am. Chem. Soc. 121: 5737

    Google Scholar 

  30. Gianinetti, E., Raimondi, M., Tornaghi, E. 1996. Int. J. Quantum Chem. 60: 157

    Google Scholar 

  31. Raimondi, M., Gianinetti, E. 1988. J. Phys. Chem. 92: 899

    Google Scholar 

  32. Mo, Y., Gao, J., Peyerimhoff, S. D. 2000. J. Chem. Phys. 112: 5530

    Google Scholar 

  33. Gerratt, J., Cooper, D. L., Karadakov, P. B., Raimondi, M. 1997. Chem. Soc. Rev. 26: 87

    Google Scholar 

  34. Cooper, D. L., Gerratt, J., Raimondi, M. 1991. Chem. Rev. 91: 929

    Google Scholar 

  35. McWeeny, R. 1989. Pure Appl. Chem. 61: 2087

    Google Scholar 

  36. Cooper, D. L., Gerratt, J., Raimondi, M. 1987. Adv. Chem. Phys. 69: 319

    Google Scholar 

  37. Mo, Y., Gao, J. 1999. Buffalo, New York: SUNY, Buffalo

    Google Scholar 

  38. Lowdin, P.-O. 1955. Phys. Rev. 97: 1474

    Google Scholar 

  39. Amos, A. T., Hall, G. G. 1961. Proc. R. Soc. London. Ser. A263: 482

    Google Scholar 

  40. King, H. F., Staton, R. E., Kim, H., Wyatt, R. E., Parr, R. G. 1967. J. Chem. Phys. 47: 1936

    Google Scholar 

  41. Mo, Y., Gao, J. 2000. J. Phys. Chem. A. 104: 3012

    Google Scholar 

  42. Gao. 1995. In Rev. Comput. Chem., Vol. 7, ed. K. B. Lipkowitz, D. B. Boyd, pp. 119. New York: VCH

    Google Scholar 

  43. Freindorf, M., Gao, J. 1996. J. Comput. Chem. 17: 386

    Google Scholar 

  44. Zwanzig, R. 1961. J. Chem. Phys. 34: 1931

    Google Scholar 

  45. Chandrasekhar, J., Smith, S. F., Jorgensen, W. L. 1984. J. Am. Chem. Soc. 106: 3049

    Google Scholar 

  46. Jorgensen, W. L., Blake, J. F., Madura, J. D., Wierschke, S. D. 1987. ACS Symp. Ser. 353: 200

    Google Scholar 

  47. Muller, R. P., Warshel, A. 1995. J. Phys. Chem. 99: 17516

    Google Scholar 

  48. Geissler, P. L., Dellago, C., Chandler, D. 1999. J. Phys. Chem. B. 103: 3706

    Google Scholar 

  49. Dellago, C., Bolhuis, P. G., Csajka, F. S., Chandler, D. 1998. J. Chem. Phys. 108: 1964

    Google Scholar 

  50. Dellago, C., Bolhuis, P. G., Chandler, D. 1999. J. Chem. Phys. 110: 6617

    Google Scholar 

  51. Hwang, J. K., King, G., Creighton, S., Warshel, A. 1988. J. Am. Chem. Soc. 110: 5297

    Google Scholar 

  52. Valleau, J. P., Torrie, G. M. 1977. In Modern Theoretical Chemistry, Vol. 5, ed. B. J. Berne, pp. 169. New York: Plenum

    Google Scholar 

  53. Jaroszewski, L., Lesyng, B., Tanner, J. J., McCammon, J. A. 1990. Chem. Phys. Lett. 175: 282

    Google Scholar 

  54. Gao, J. 1993. Int. J. Quantum Chem.: Quantum Chem. Symp. 27: 491

    Google Scholar 

  55. Schmitt, U. W., Voth, G. A. 1999. J. Chem. Phys. 111: 9361

    Google Scholar 

  56. Ojamae, L., Shavitt, I., Singer, S. J. 1998. J. Chem. Phys. 109: 5547

    Google Scholar 

  57. Chuang, Y.-Y., Cramer, C. J., Truhlar, D. G. 1998. Int. J. Quantum Chem. 70: 887

    Google Scholar 

  58. Chandrasekhar, J., Smith; S. F., Jorgensen, W. L. 1985. J. Am. Chem. Soc. 107: 154

    Google Scholar 

  59. Vande Linde, S. R., Hase, W. L. 1990. J. Chem. Phys. 93: 7962

    Google Scholar 

  60. Zhao, X. G., Tucker, S. C., Truhlar, D. G. 1991. J. Am. Chem. Soc. 113: 826

    Google Scholar 

  61. Shaik, S. S., Schlegel, H. B., Wolfe, S. 1992. Theoretical Aspects of Physical Organic Chemistry: The SN2 Mechanism. New York: Wiley

    Google Scholar 

  62. Shi, Z., Boyd, R. J. 1991. J. Am. Chem. Soc. 113: 2434

    Google Scholar 

  63. Glukhovtsev, M. N., Pross, A., Radom, L. 1995. J. Am. Chem. Soc. 117: 9012

    Google Scholar 

  64. Olmstead, W. N., Brauman, J. I. 1977. J. Am. Chem. Soc. 99: 4219

    Google Scholar 

  65. Pellerite, M. J., Brauman, J. I. 1980. J. Am. Chem. Soc. 102: 5993

    Google Scholar 

  66. Glukhovtsev, M. N., Pross, b. A., Radom, L. 1995. J. Am. Chem. Soc. 117: 2024

    Google Scholar 

  67. Dougherty, R. C., Roberts, J. D. 1974. Org. Mass Spectrom. 8: 81.

    Google Scholar 

  68. Wladkowski, B. D., Brauman, J. I. 1993. J. Phys. Chem. 97: 13158

    Google Scholar 

  69. Barlow, S. E., Van Doren, J. M., Bierbaum, V. M. 1988. J. Am. Chem. Soc. 110: 7240

    Google Scholar 

  70. Albery, W. J., Kreevoy, M. M. 1978. Adv. Phys. Org. Chem. 16: 87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gao, J., Mo, Y. (2002). Simulation of Chemical Reactions in Solution Using an AB Initio Molecular Orbital-Valence Bond Model. In: Schwartz, S.D. (eds) Theoretical Methods in Condensed Phase Chemistry. Progress in Theoretical Chemistry and Physics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-46949-9_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-46949-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6687-4

  • Online ISBN: 978-0-306-46949-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics