Skip to main content

Nonstationary Stochastic Dynamics and Applications to Chemical Physics

  • Chapter
Theoretical Methods in Condensed Phase Chemistry

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 5))

Abstract

A new approach to understanding nonstationary processes has recently been developed through the use of the so-called irreversible generalized Langevin equation (iGLE). The iGLE model can accommodate nonstationary changes in temperature and the friction strength of the environment. These changes may be coupled to macroscopic averages of the environment as induced by the collective motion of many equivalent tagged particles. As these environments may not be identical, the WiGLE model has also been developed, and it accounts for heterogeneous environments, each of which is coupled to a set of w neighbors. Possible applications of these models include the chemical reaction dynamics of thermosetting polymers and living polymers, and the folding dynamics of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. A. Kramers, Physica 7, 284 (1940).

    Article  CAS  Google Scholar 

  2. R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).

    Article  CAS  Google Scholar 

  3. R. Zwanzig, in Lectures in Theoretical Physics (Boulder), edited by W. E. Britton, B. W. Downs, and J. Downs (Wiley-Interscience, New York, 1961), Vol. 3, p. 135.

    Google Scholar 

  4. J. Prigogine and P. Resibois, Physica 27, 629 (1961).

    CAS  Google Scholar 

  5. G. W. Ford, M. Kac, and P. Mazur, J. Math. Phys. 6, 504 (1965).

    Article  Google Scholar 

  6. H. Mori, Prog. Theor. Phys. 33, 423 (1965).

    Google Scholar 

  7. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990), and references therein.

    Google Scholar 

  8. R. Brown, Philos. Mag. 4, 161 (1828), 6, 161 (1829).

    Google Scholar 

  9. A. Einstein, Ann. Phys. 17, 549 (1905), 19, 371 (1906).

    CAS  Google Scholar 

  10. P. Langevin, Comptes Rednus de l’Acacemie de Sciences (Paris) 146, 530 (1908).

    CAS  Google Scholar 

  11. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, New York, 1981).

    Google Scholar 

  12. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, San Diego, 1986).

    Google Scholar 

  13. R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980).

    Article  CAS  Google Scholar 

  14. S. A. Adelman, Adv. Chem. Phys. 53, 61 (1983).

    CAS  Google Scholar 

  15. J. T. Hynes, in Theory of Chemical Reaction Dynamics, edited by M. Baer (CRC, Boca Raton, FL, 1985), Vol. 4, p. 171.

    Google Scholar 

  16. J. T. Hynes, Annu. Rev. Phys. Chem. 36, 573 (1985).

    Article  CAS  Google Scholar 

  17. A. Nitzan, Adv. Chem. Phys. 70, 489 (1988).

    Google Scholar 

  18. B. J. Berne, M. Borkovec, and J. E. Straub, J. Chem. Phys. 92, 3711 (1988).

    CAS  Google Scholar 

  19. S. C. Tucker, M. E. Tuckerman, B. J. Berne, and E. Pollak, J. Chem. Phys. 95, 5809 (1991).

    Article  CAS  Google Scholar 

  20. S. C. Tucker, J. Phys. Chem. 97, 1596 (1993).

    Article  CAS  Google Scholar 

  21. E. Pollak, in Dynamics of Molecules and Chemical Reactions, edited by R. E. Wyatt and J. Zhang (Marcel Dekker, New York, 1996).

    Google Scholar 

  22. R. Hernandez and F. L. Somer, J. Phys. Chem. B 103, 1064 (1999).

    Google Scholar 

  23. R. Hernandez and F. L. Somer, J. Phys. Chem. B 103, 1070 (1999).

    Google Scholar 

  24. J. Keizer, J. Chem. Phys. 64, 1679 (1976).

    CAS  Google Scholar 

  25. G. C. Schatz, Computers Phys. 31, 295 (1978).

    CAS  Google Scholar 

  26. G. C. Schatz, J. Chem. Phys. 73, 2792 (1980).

    CAS  Google Scholar 

  27. C. C. Martens, Phys. Rev. A 45, 6914 (1992).

    Google Scholar 

  28. R. Hernandez, J. Chem. Phys. 110, 7701 (1999).

    Article  Google Scholar 

  29. F. L. Somer and R. Hernandez, J. Phys. Chem. A 103, 11004 (1999).

    Google Scholar 

  30. F. L. Somer and R. Hernandez, J. Phys. Chem. B 104, 3456 (2000).

    Google Scholar 

  31. K. Lindenberg and V. Seshadri, Physica A 109, 483 (1981).

    Google Scholar 

  32. B. Carmeli and A. Nitzan, Chem. Phys. Lett. 102, 517 (1983).

    Article  CAS  Google Scholar 

  33. K. Lindenberg and E. Cortés, Physica A 126, 489 (1984).

    Google Scholar 

  34. R. Zwanzig and M. Bixon, Phys. Rev. A 2, 2005 (1970).

    Google Scholar 

  35. H. Metiu, D. Oxtoby, and K. F. Freed, Phys. Rev. A 15, 361 (1977).

    Google Scholar 

  36. J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys. 83, 3172 (1985).

    CAS  Google Scholar 

  37. J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys. 84, 1788 (1986)

    Article  CAS  Google Scholar 

  38. R. Zwanzig, Phys. Rev. 124, 983 (1961).

    Article  CAS  Google Scholar 

  39. R. Zwanzig, J. Stat. Phys. 9, 215 (1973).

    Article  Google Scholar 

  40. A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981), Ann. Phys. (New York) 149, 374 (1983).

    Article  Google Scholar 

  41. E. Cortés, B. J. West, and K. Lindenberg, J. Chem. Phys. 82, 2708 (1985).

    Google Scholar 

  42. E. Pollak, J. Chem. Phys. 85, 865 (1986).

    Article  CAS  Google Scholar 

  43. A. M. Levine, M. Shapiro, and E. Pollak, J. Chem. Phys. 88, 1959 (1988).

    CAS  Google Scholar 

  44. B. J. Gertner, J. P. Bergsma, K. R. Wilson, S. Lee, and J. T. Hynes, J. Chem. Phys. 86, 1377 (1987).

    Article  CAS  Google Scholar 

  45. E. Pollak, J. Chem. Phys. 86, 3944 (1987).

    CAS  Google Scholar 

  46. H. Risken, The Fokker-Planck Equation (Springer-Verlag, New York, 1989).

    Google Scholar 

  47. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer-Verlag, New York, 1992).

    Google Scholar 

  48. K. Lindenberg, K. E. Shuler, V. Seshadri, and B. J. West, in Probabilistic Analysis and Related Topics, edited by A. T. Bharucha-Reid (Academic Press, New York, 1983), Vol. 3, pp. 81–125.

    Google Scholar 

  49. R. Kubo, Rep. Prog. Theor. Phys. 29, 55 (1966).

    Google Scholar 

  50. E. P. Wigner, Ann. Math. 53, 36 (1951), 62, 548 (1955); 65, 203 (1957); 67, 325 (1958).

    Article  Google Scholar 

  51. F. J. Dyson, J. Math. Phys. 3, 1199 (1962).

    Google Scholar 

  52. M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels (Academic, New York, 1967).

    Google Scholar 

  53. P. J. Flory, J. Am. Chem. Soc. 63, 3083 (1941).

    CAS  Google Scholar 

  54. W. H. Stockmayer, J. Chem. Phys. 11, 45 (1943).

    CAS  Google Scholar 

  55. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).

    Google Scholar 

  56. P. J. Flory, Statistical Mechanics of Chain Molecules (Wiley-Interscience, New York, 1969).

    Google Scholar 

  57. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).

    Google Scholar 

  58. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).

    Google Scholar 

  59. K. E Freed, Renormalization Group Theory of Macromolecules (Wiley-Interscience, New York, 1987).

    Google Scholar 

  60. M. Szwarc, Carbanions, Living Polymers and Electron Transfer Processes (Wiley-Interscience, New York, 1968).

    Google Scholar 

  61. M. Szwarc and M. Van Beylen, Ionic Polymerization and Living Polymers (Chapman & Hall, New York, 1993).

    Google Scholar 

  62. S. C. Greer, Adv. Chem. Phys. 94, 261 (1996).

    CAS  Google Scholar 

  63. A. V. Tobolsky and A. J. Eisenberg, J. Colloid Sci. 17, 49 (1962).

    CAS  Google Scholar 

  64. P. G. de Gennes, Phys. Lett. 38A, 339 (1972).

    Google Scholar 

  65. J. des Cloiseaux, J. Phys. (Paris) 36, 281 (1975).

    Google Scholar 

  66. J. C. Wheeler and P. M. Pfeuty, Phys. Rev. A 24, 1050 (1981).

    Google Scholar 

  67. R. L. Scott, J. Phys. Chem. 69, 261 (1965).

    CAS  Google Scholar 

  68. S. J. Kennedy and J. C. Wheeler, J. Chem. Phys. 78, 953 (1983).

    CAS  Google Scholar 

  69. L. R. Corrales and J. C. Wheeler, J. Chem. Phys. 90, 5030 (1989).

    Article  CAS  Google Scholar 

  70. K. M. Zheng, S. C. Greer, L. R. Corrales, and J. Ruiz-Garcia, J. Chem. Phys. 98, 9873 (1993).

    Article  CAS  Google Scholar 

  71. A. Milchev, Polymer 34, 362 (1993).

    Article  CAS  Google Scholar 

  72. A. Milchev and D. P. Landau, Phys. Rev. Eb 52, 6431 (1995).

    Google Scholar 

  73. Reaction Polymers, edited by W. E Gum, W. Riese, and H. Ulrich (Oxford Univeristy Press, New York, 1992).

    Google Scholar 

  74. P. J. Prepelkaand J. L. Wharton, J. Cellular Plastics 11, 87 (1975).

    Google Scholar 

  75. L. J. Lee, Rubber Chem. Tech 53, 542 (1980).

    CAS  Google Scholar 

  76. J. M. Castro, S. D. Lipshitz, and C. W. Macosko, AIChE J. 26, 973 (1982).

    Google Scholar 

  77. S. A. Jabarin and E. A. Lofgren, J. Appl. Polym. Sci. 32, 5315 (1986).

    Article  CAS  Google Scholar 

  78. P. Desai and A. S. Abhiraman, J. Polym. Sci. B 26, 1657 (1988).

    Google Scholar 

  79. R. Akki, S. Bair, and A. S. Abhiraman, Polym. Eng. Sci. 35, 1781 (1995).

    Article  CAS  Google Scholar 

  80. B. O’Shaughnessy, Phys. Rev. Lett. 71, 3331 (1993).

    Google Scholar 

  81. B. O’Shaughnessy and J. Yu, Phys. Rev. Lett. 73, 1723 (1994).

    Google Scholar 

  82. E. Trommsdorff, H. Köhle, and P. Lagally, Makromol. Chem. 1, 169 (1948).

    Article  CAS  Google Scholar 

  83. S. F. Edwards, Proc. Phys. Soc. London 85, 613 (1965)

    CAS  Google Scholar 

  84. S. F. Edwards, Natl. Bur. Stand. (U.S.) Misc. Publ. 273, 225 (1965).

    CAS  Google Scholar 

  85. K. F. Freed, Adv. Chem. Phys. 22, 1 (1972).

    CAS  Google Scholar 

  86. R. Zwanzig, A. Szabo, and B. Bachi, Proc. Natl. Acad. Sci. USA 89, 20 (1992).

    CAS  Google Scholar 

  87. R. Zwanzig, Proc. Natl. Acad. Sci. USA 92, 9801 (1995).

    CAS  Google Scholar 

  88. N. D. Socci, J. N. Onuchic, and P. G. Wolynes, J. Chem. Phys. 104, 5860 (1996).

    Article  CAS  Google Scholar 

  89. J. Wang, J. Onuchic, and P. Wolynes, Phys. Rev. Lett. 76, 4861 (1996).

    CAS  Google Scholar 

  90. S. S. Plotkin, J. Wang, and P. Wolynes, J. Chem. Phys. 106, 2932 (1997).

    Article  CAS  Google Scholar 

  91. D. Klimov and D. Thirumalai, Phys. Rev. Lett. 79, 317 (1997).

    Article  CAS  Google Scholar 

  92. S. S. Plotkin and P. G. Wolynes, Phys. Rev. Lett. 80, 5015 (1998).

    Article  CAS  Google Scholar 

  93. P. X. Qi, T. R. Sosnick, and S. W. Englander, Nature 5, 882 (1998).

    CAS  Google Scholar 

  94. R. P. Bhattacharyya and T. R. Sosnick, Nature 5, 882 (1998).

    Google Scholar 

  95. D. J. Bicout and A. Szabo, Protein Sci 9, 452 (2000).

    CAS  Google Scholar 

  96. J. D. Bryngelson and P. G. Wolynes, J. Phys. Chem. 93, 6902 (1989).

    Article  CAS  Google Scholar 

  97. S. C. Tucker, in New Trends in Kramers’ Reaction Rate Theory, edited by P. Hänggi and P. Talkner (Kluwer Academic, The Netherlands, 1995), pp. 5–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hernandez, R., Somer, F.L. (2002). Nonstationary Stochastic Dynamics and Applications to Chemical Physics. In: Schwartz, S.D. (eds) Theoretical Methods in Condensed Phase Chemistry. Progress in Theoretical Chemistry and Physics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-46949-9_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46949-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6687-4

  • Online ISBN: 978-0-306-46949-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics