Skip to main content

Methods for Finding Saddle Points and Minimum Energy Paths

  • Chapter
Theoretical Methods in Condensed Phase Chemistry

Abstract

The problem of finding minimum energy paths and, in particular, saddle points on high dimensional potential energy surfaces is discussed. Several different methods are reviewed and their efficiency compared on a test problem involving conformational transitions in an island of adatoms on a crystal surface. The focus is entirely on methods that only require the potential energy and its first derivative with respect to the atom coordinates. Such methods can be applied, for example, in plane wave based Density Functional Theory calculations, and the computational effort typically scales well with system size. When the final state of the transition is known, both the initial and final coordinates of the atoms can be used as boundary conditions in the search. Methods of this type include the Nudged Elastic Band, Ridge, Conjugate Peak Refinement, Drag method and the method of Dewar, Healy and Stewart. When only the initial state is known, the problem is more challenging and the search for the saddle point represents also a search for the optimal transition mechanism. We discuss a recently proposed method that can be used in such cases, the Dimer method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Eyring, J. Chem. Phys. 3, 107 (1935).

    CAS  Google Scholar 

  2. E. Wigner, Trans. Faraday Soc. 34, 29 (1938).

    CAS  Google Scholar 

  3. J. C. Keck, Adv. Chem. 13, 85 (1967).

    Google Scholar 

  4. P. Pechukas, in ‘Dynamics of Molecular Collisions’, part B, ed. W. H. Miller (Plenum Press, N.Y. 1976).

    Google Scholar 

  5. D. G. Truhlar, B. C. Garrett and S. J. Klippenstein, J. Phys. Chem. 100, 12771 (1996).

    Article  CAS  Google Scholar 

  6. A. F. Voter and D. Doll, J. Chem. Phys. 80, 5832 (1984).

    CAS  Google Scholar 

  7. D. G. Truhlar and B. C. Garrett, Annu. Rev. Phys. Chem. 35, 159 (1984).

    Article  CAS  Google Scholar 

  8. J. B. Anderson, J. Chem. Phys. 58, 4684 (1973).

    CAS  Google Scholar 

  9. A. F. Voter and D. Doll, J. Chem. Phys. 82, 80 (1985).

    CAS  Google Scholar 

  10. C. Wert and C. Zener, Phys. Rev. 76, 1169 (1949).

    Article  CAS  Google Scholar 

  11. G. H. Vineyard, J. Phys. Chem. Solids 3 121 (1957).

    Article  CAS  Google Scholar 

  12. R. Marcus, J. Chem. Phys. 45, 4493 (1966).

    CAS  Google Scholar 

  13. G. Mills, G. K. Schenter, D. Makarov and H. Jónsson Chem. Phys. Lett. 278, 91 (1997).

    Article  CAS  Google Scholar 

  14. G. Mills, G. K. Schenter, D. Makarov and H. Jónsson, ‘RAW Quantum Transition State Theory’, in ‘Classical and Quantum Dynamics in Condensed Phase Simulations’, ed. B. J. Berne, G. Ciccotti and D. F. Coker, page 405 (World Scientific, 1998).

    Google Scholar 

  15. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw Hill, New York, 1965).

    Google Scholar 

  16. W. H. Miller, J. Chem. Phys. 62, 1899 (1975).

    CAS  Google Scholar 

  17. S. Coleman, in The Whys of Subnuclear Physics, ed. A. Zichichi (Plenum, N.Y., 1979).

    Google Scholar 

  18. V. A. Benderskii, D. E. Makarov and C. A. Wight, Chemical Dynamics at Low Temperature (Whiley, New York, 1994).

    Google Scholar 

  19. M. L. McKee and M. Page, Reviews in Computational Chemistry Vol. IV, K. B. Lipkowitz and D. B. Boyd, Eds., (VCH Publishers Inc., New York, 1993).

    Google Scholar 

  20. H. Jónsson, G. Mills and K. W. Jacobsen, ‘Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions’, in ‘Classical and Quantum Dynamics in Condensed Phase Simulations’, ed. B. J. Berne. G. Ciccotti and D. F. Coker, page 385 (World Scientific, 1998).

    Google Scholar 

  21. H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).

    Article  CAS  Google Scholar 

  22. T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett. 49, 225 (1977).

    Article  CAS  Google Scholar 

  23. M. J. Rothman and L. L. Lohr, Chem. Phys. Lett. 70, 405 (1980).

    Article  CAS  Google Scholar 

  24. G. Mills and H. Jónsson, Phys. Rev. Lett. 72, 1124 (1994).

    Article  CAS  Google Scholar 

  25. G. Mills, H. Jónsson and G. K. Schenter, Surf. Sci. 324, 305 (1995).

    Article  CAS  Google Scholar 

  26. G. Henkelman and H. Jónsson, (submitted to J. Chem. Phys.).

    Google Scholar 

  27. N. Mousseau and G. T. Barkema, Phys. Rev. E 57, 2419 (1998).

    Article  CAS  Google Scholar 

  28. M. Villarba and H. Jónsson, Surf. Sci. 317, 15 (1994).

    Article  CAS  Google Scholar 

  29. M. Villarba and H. Jónsson, Surf. Sci. 324, 35 (1995).

    Article  CAS  Google Scholar 

  30. E. Batista and H. Jónsson, Computational Materials Science (in press).

    Google Scholar 

  31. M. R. Sørensen, K. W. Jacobsen and H. Jónsson, Phys. Rev. Lett. 77, 5067 (1996).

    Google Scholar 

  32. T. Rasmussen, K. W. Jacobsen, T. Leffers, O. B. Pedersen, S. G. Srinivasan, and H. Jónsson, Phys. Rev. Lett. 79, 3676 (1997).

    CAS  Google Scholar 

  33. B. Uberuaga, M. Levskovar, A. P. Smith, H. Jónsson, and M. Olmstead, ‘Diffusion of Ge below the Si(100) surface: Theory and Experiment’, Phys. Rev. Lett. 84, 2441 (2000).

    Article  CAS  Google Scholar 

  34. L. R. Pratt, J. Chem. Phys. 85, 5045 (1986).

    CAS  Google Scholar 

  35. A. Kuki and P. G. Wolynes, Science 236, 1647 (1986).

    Google Scholar 

  36. R. Elber and M. Karplus, Chem. Phys. Lett. 139, 375 (1987).

    Article  CAS  Google Scholar 

  37. R. Czerminski and R. Elber, Int. J. Quantum Chem. 24, 167 (1990); R. Czerminski and R. Elber, J. Chem. Phys. 92, 5580 (1990).

    CAS  Google Scholar 

  38. A. Ulitsky and R. Elber, J. Chem. Phys. 92, 1510 (1990).

    Article  CAS  Google Scholar 

  39. C. Choi and R. Elber, J. Chem. Phys. 94, 751 (1991).

    CAS  Google Scholar 

  40. E. M. Sevick, A. T. Bell and D. N. Theodorou, J. Chem. Phys. 98, 3196 (1993).

    Article  CAS  Google Scholar 

  41. T. L. Beck, J. D. Doll and D. L. Freeman, J. Chem. Phys. 90, 3183 (1989).

    Google Scholar 

  42. R. E. Gillilan and K. R. Wilson, J. Chem. Phys. 97, 1757 (1992).

    Article  CAS  Google Scholar 

  43. O. S. Smart, Chem. Phys. Lett. 222, 503 (1994).

    Article  CAS  Google Scholar 

  44. G. Henkelman, B. Uberuaga and H. Jónsson, (submitted to J. Chem. Phys.).

    Google Scholar 

  45. S. Fischer and M. Karplus, Chem. Phys. Lett. 194, 252 (1992).

    Article  CAS  Google Scholar 

  46. Stefan Fischer, “Curvilinear reaction-coordinates of conformal change in macromolecules: application to rotamase catalysis,” Ph. D. Thesis, Harvard University, (1992).

    Google Scholar 

  47. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, in Numerical Recipies (Cambridge University Press, New York, 1986).

    Google Scholar 

  48. I. V. Ionova and E. A. Carter, J. Chem. Phys. 98, 6377 (1993).

    Article  CAS  Google Scholar 

  49. M. J. S. Dewar, E. F. Healy, and J. J. P. Stewart, J. Chem. Soc., Faraday Trans. 280, 227 (1984).

    Google Scholar 

  50. C. J. Cerjan and W. H. Miller, J. Chem. Phys. 75, 2800 (1981).

    Article  CAS  Google Scholar 

  51. D. T. Nguyen and D. A. Case, J. Phys. Chem. 89, 4020 (1985).

    Article  CAS  Google Scholar 

  52. W. Quapp, Chem. Phys. Lett. 253, 286 (1996).

    Article  CAS  Google Scholar 

  53. H. Taylor and J. Simons J. Phys. Chem. 89, 684 (1985).

    Article  CAS  Google Scholar 

  54. J. Baker, J. Comput. Chem. 7, 385 (1986).

    CAS  Google Scholar 

  55. D. J. Wales, J. Chem. Phys. 91, 7002 (1989).

    CAS  Google Scholar 

  56. N. P. Kopsias and D. N. Theodorou, J. Chem. Phys. 109, 8573 (1998).

    Article  CAS  Google Scholar 

  57. J, D, Honeycutt and H. C. Andersen, Chem. Phys. Lett. 108, 535 (1984); J. Chem. Phys. 90, 1585 (1986).

    Article  CAS  Google Scholar 

  58. G. Henkelman and H. Jónsson, J. Chem. Phys. 111, 7010 (1999).

    Article  CAS  Google Scholar 

  59. A. F. Voter, Phys. Rev. Lett. 78, 3908 (1997).

    Article  CAS  Google Scholar 

  60. G. Mills, T. R. Mattsson, I. Mollnitz, and H. Metiu, J. Chem. Phys. 111, 8639 (1999).

    Article  CAS  Google Scholar 

  61. D. W. Bassett and P. R. Webber, Surf. Sci. 70, 520 (1978).

    Article  CAS  Google Scholar 

  62. G. T. Barkema and N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996).

    Article  CAS  Google Scholar 

  63. Polanyi and Wong, J. Chem. Phys. 51, 1439 (1969).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Henkelman, G., Jóhannesson, G., Jónsson, H. (2002). Methods for Finding Saddle Points and Minimum Energy Paths. In: Schwartz, S.D. (eds) Theoretical Methods in Condensed Phase Chemistry. Progress in Theoretical Chemistry and Physics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-46949-9_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-46949-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6687-4

  • Online ISBN: 978-0-306-46949-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics