Skip to main content

The application of the irreversible thermodynamics to the development of constitutive equations

  • Chapter
Continuum Thermomechanics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 76))

  • 666 Accesses

Abstract

The thermodynamics of irreversible processes, using the notion of local state and internal state variables, is used for developing consistent constitutive and damage equations. The Generalized Standard Models are recalled and some of the induced limitations are discussed, both for non linear kinematic hardening in viscoplasticity and for elasto-plastic damage couplings. In order to release some of these constraints, a pseudo-standard approach is formulated and discussed, that allows us to recover most of the classically used constitutive equations and damage models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benallal, A. (1989). Thermoviscoplasticité et endommagement des structures. Doctorat d’Etat, Université Pierre et Marie Curie, Paris 6.

    Google Scholar 

  2. Carathéodory, C. (1909). Untersuchungen über die Grundlagen der Thermodynamik. Mathematische Annalen, 67:355–386.

    Article  MathSciNet  Google Scholar 

  3. Chaboche, J. L. (1977). Sur l’utilisation des variables d’état interne pour la description de la viscoplasticité cyclique avec endommagement. In Problèmes Non Linéaires de Mécanique, pages 137–159. Symposium Franco-Polonais de Rhéologie et Mécanique, Cracovie.

    Google Scholar 

  4. Chaboche, J. L. (1983). On the constitutive equations of materials under monotonic or cyclic loadings. La Recherche Aérospatiale, (5):31–43.

    Google Scholar 

  5. Chaboche, J. L. (1989). Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. of Plasticity, 5:247–302.

    Article  MATH  Google Scholar 

  6. Chaboche, J. L. (1996). Unified cyclic viscoplastic constitutive equations: development, capabilities and thermodynamic framework. In Krauss, A. S. and Krauss, K., editors, Unified Constitutive Laws of Plastic Deformation, pages 1–68. Academic Press Inc.

    Google Scholar 

  7. Chaboche, J. L. (1997). Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers. Int. J. Solids Structures, 34(18):2239–2254.

    Article  MATH  Google Scholar 

  8. Chaboche, J. L. (1999). Thermodynamically founded CDM models for creep and other conditions. In Skrzypek, J. and Altenbach, H., editors, Modeling of Material Damage and Failure of Structures, page in press. Springer.

    Google Scholar 

  9. Chow, C. L. and Wei, Y. (1991). A model of Continuum Damage Mechanics for fatigue failure. Int. J. Fracture, 50:301–316.

    Article  Google Scholar 

  10. Coleman, B. D. and Gurtin, M. E. (1967). Thermodynamics with internal state variables. J. Chem. Phys., 47:597–613.

    Article  ADS  Google Scholar 

  11. Germain, P. (1973). Cours de Mécanique des Milieux Continus, volume I. Masson, Paris.

    MATH  Google Scholar 

  12. Germain, P. (1974). Thermodynamique des milieux continus. Entropie, 55:7–14. Congrès Français de Mécanique.

    Google Scholar 

  13. Germain, P., Nguyen, Q. S., and Suquet, P. (1983). Continuum thermodynamics. J. of Applied Mechanics, 50:1010–1020.

    Article  ADS  MATH  Google Scholar 

  14. Halphen, B. and Nguyen, Q. S. (1975). Sur les matériaux standards generalises. J. de Mécanique, 14(l):39–63.

    MATH  Google Scholar 

  15. Hansen, N. R. and Schreyer, H. L. (1992). Thermodynamically consistent theories for elastoplasticity coupled with damage. In Damage Mechanics and Localization, volume 142/AMD, pages 53–67. ASME.

    Google Scholar 

  16. Hayhurst, D. R. (1972). Creep rupture under multiaxial state of stress. J. Mech. Phys. Solids, 20(6):381–390.

    Article  ADS  Google Scholar 

  17. Ladevèze, P. (1992). On the role of creep continuum damage in structural mechanics. In Ladevèze, P. and Zienkiewiecz, O., editors, New Advances in Computational Structural Mechanics, pages 3–22, Oxford. Elsevier.

    Google Scholar 

  18. Lemaître, J. (1985). A Continuum Damage Mechanics model for ductile fracture. J. of Engng. Mat. Technol., 107:83–89.

    Article  Google Scholar 

  19. Lemaître, J. (1992). A course on Damage Mechanics. Springer.

    Google Scholar 

  20. Lemaître, J. and Chaboche, J. L. (1985). Mécanique des Matériaux Solides. Dunod, Paris.

    Google Scholar 

  21. Mandel, J. (1964). Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique. Munich. 11th Congress ICTAM.

    Google Scholar 

  22. Murakami, S. and Ohno, N. (1980). A continuum theory of creep and creep damage. In Ponter, A. and Hayhurst, D. R., editors, Creep in Structures, pages 422–443. 3rd IUTAM Symp., Springer-Verlag. Leicester.

    Google Scholar 

  23. Rabotnov, Y. N. (1969). Creep problems in structural members. North-Holland.

    Google Scholar 

  24. Sidoroff, F. (1975). On the formulation of plasticity and viscoplasticity with internal variables. Arch. Mech., Poland, 27(5–7):807–819.

    MATH  MathSciNet  Google Scholar 

  25. Truesdell, C. and Noll, W. (1965). The non-linear field theories of mechanics. In Flügge, S., editor, Encyclopedia of Physics, volume 3/3, Sec.79, New York. Springer.

    Google Scholar 

  26. Voyiadjis, G. Z. and Kattan, P. I. (1999). Advances in Damage Mechanics: Metals and Metal Matrix Composites. Elsevier.

    Google Scholar 

  27. Zhu, Y. Y. and Cescotto, S. (1995). Fully coupled elastovisco-plastic damage theory for anisotropic materials. Int. J. Solids Structures, 32(11):1607–1641.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chaboche, J.L. (2000). The application of the irreversible thermodynamics to the development of constitutive equations. In: Maugin, G.A., Drouot, R., Sidoroff, F. (eds) Continuum Thermomechanics. Solid Mechanics and Its Applications, vol 76. Springer, Dordrecht. https://doi.org/10.1007/0-306-46946-4_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-46946-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6407-8

  • Online ISBN: 978-0-306-46946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics