Skip to main content

Lattice Continuum Model for Bone Remodeling Considering Microstructural Optimality of Trabecular Architecture

  • Conference paper
IUTAM Symposium on Synthesis in Bio Solid Mechanics

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 69))

Abstract

To consider microstructural changes of cancellous bone in remodeling mechanics, a lattice continuum model of cancellous bone considering the optimality at microstructural component was discussed based on uniform stress hypothesis. The trabecular architecture is modeled as a lattice structure of rod/beam-like element that is embedded in the continuum in the context of the couple stress theory. For a vertebral body modeled by quantitative measurements of the trabecular architecture, a remodeling simulation was conducted under the repetitive bending with compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, T., Tomita, Y. and Tanaka, M. (1996): Skew lattice continuum model for cancellous bone, In: Markov, K. Z. (ed.), Continuum Models and Discrete Systems, 342–349, World Scientific.

    Google Scholar 

  • Adachi, T., Tomita, Y., Sakaue, II., and Tanaka, M. (1997): Simulation of trabecular surface remodeling based on local stress nonuniformity, JSME Int. J. 40-4: 782–792.

    Google Scholar 

  • Adachi, T., Tomita, Y., and Tanaka, M. (1998a): Computational simulation of deformation behavior of 2d-lattice continuum, Int. J. Mech. Sci. 40 (in press).

    Google Scholar 

  • Adachi, T., Tanaka, M., and Tomita, Y. (1998b): Uniform stress state in hone structure with residual stress, Trans. ASME, J. Biomech. Eng. 120 (in press).

    Google Scholar 

  • Beaupre, G. S. and Hayes, W. C. (1985): Finite element analysis of a three-dimensional open-celled model for trabecular bone, Trans. ASME, J. Biomech. Eng. 107: 249–256.

    CAS  Google Scholar 

  • Cowin, S. C. (1986): Wolff’s law of trabecular architecture at remodeling equilibrium, Trans. ASME. J. Biomech. Eng. 108: 83–88.

    CAS  Google Scholar 

  • Cowin, S. C., Sadegh, A. M. and Luo, G. M. (1992): An evolutionary Wolff’s law for trabecular architecture, Trans. ASME. J. Biomech. Eng. 114: 129–136.

    CAS  Google Scholar 

  • Cowin, S. C. (1993): Bone stress adaptation models, Trans. ASME, J. Biomech. Eng. 115: 528–533.

    Article  CAS  Google Scholar 

  • Fung, Y. C. (1984): Biodynamics: Circulation, 64, Springer.

    Google Scholar 

  • Gibson, L. J. (1985): The mechanical behaviour of cancellous bone, J. Biomech., 18-5: 317–328.

    Google Scholar 

  • Goldstein, S. A., Matthews, L. S., Kuhn, J. L., and Hollister, S. J. (1991): Trabecular bone remodeling: An experimental model, J. Biomech. 24-S1: 135–150.

    Google Scholar 

  • Guldberg, R. E., Richards, M., Caldwell, N. J., Kuelske, C. L., Goldstein, S. A. (1997): Trabecular bone adaptation to variations in porous-coated implant topology, J. Biomech., 30-2: 147–153.

    Google Scholar 

  • Hollister, S. J., Fyhrie, D. P., Jepsen, K. J. and Goldstein, S. A. (1991): Application of homogenization theory to the study of trabecular bone mechanics, J. Biomech. 24-9: 825–839.

    Google Scholar 

  • Hollister, S. J., Brennan, J. M. and Kikuchi, N. (1994): A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress, J. Biomech. 27-4: 433–444.

    Google Scholar 

  • Koiter, W. T. (1964): Couple-stress in the theory of elasticity, Proc. K. Ned Akad. Wet. B-67: 17–44, North-Holland Publishing.

    Google Scholar 

  • Mindlin, R. D. (1963): Influence of couple-stresses on stress concentrations, Exp. Mech. 3: 1–7.

    Google Scholar 

  • Miyamoto, H., Shiratori, M. and Miyoshi, T. (1971): Analysis of stress and strain distribution at the crack tip by finite element method, In: Gallagher, R. H., Yamada, Y. and Oden, J. T. (eds.), Recent Advances in Matrix Methods of Structural Analysis and Design, 317–341.

    Google Scholar 

  • Parfitt, A. M. (1984): The cellular basis of bone remodeling: the quantum concept reexamined in light of recent advances in the cell biology of bone, Calcif. Tissue Int. 36: S37–S45.

    Google Scholar 

  • Parfitt, A. M. (1994): Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone, J. Cellular Biochem. 55: 273–286.

    CAS  Google Scholar 

  • Takamizawa, K. and Hayashi, K. (1987): Strain energy density function and uniform strain hypothesis for arterial mechanics, J. Biomech. 20-1: 7–17.

    Google Scholar 

  • Tanaka, M. and Adachi, T. (1994): Preliminary study on mechanical bone remodeling permitting residual stress, JSME Int. J. 37A-1: 87–95.

    Google Scholar 

  • Tanaka, M., Adachi, T. and Tomita, Y. (1995): Lattice continuum as computational model of bone with microstructure: mechanical characteristics and structural parameter, In: Power, H. and Hart, R. T. (eds.), Computer Simulations in Biomedicine: 277–284, Computational Mechanics Publications, Southampton.

    Google Scholar 

  • Tanaka, M., Adachi, T. and Tomita, Y. (1996): Mechanical remodeling of bone with tissue structure considering residual stress, JSME Int. J. 39-3: 297–305.

    Google Scholar 

  • Tanaka, M. and Adachi, T. (1996): Residual stress in bone structure: experimental observation and model study with uniform stress hypothesis, In: Hayashi, K., Kamiya, A. and Ono, K. (eds.), Biomechanics-Functional Adaptation and Remodeling: 169–184, Springer.

    Google Scholar 

  • Tanaka, M. Adachi, T., and Tomita, Y. (1997): Simulation model of surface remodeling in cancellous bone by lattice continuum concept, In: Power, H., Brebbia, C. A., and Kenny, J. (eds.), Simulations in Biomedicine IV: 189–198, Computational Mechanics Publications, Southampton.

    Google Scholar 

  • Turner, C. H., Cowin, S. C., Rho, J. Y., Ashman, R. B. and Rice, J. C. (1990): The fabric dependence of the orthotropic elastic constants of cancellous bone, J. Biomech. 23-6: 549–561.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this paper

Cite this paper

Tanaka, M., Adachi, T. (1999). Lattice Continuum Model for Bone Remodeling Considering Microstructural Optimality of Trabecular Architecture. In: Pedersen, P., Bendsøe, M.P. (eds) IUTAM Symposium on Synthesis in Bio Solid Mechanics. Solid Mechanics and its Applications, vol 69. Springer, Dordrecht. https://doi.org/10.1007/0-306-46939-1_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-46939-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5615-8

  • Online ISBN: 978-0-306-46939-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics