Skip to main content

Architectural 3-D Parameters and Anisotropic Elastic Properties of Cancellous Bone

  • Conference paper

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 69))

Conclusions

Using 3-D reconstruction, micro-FEM and 3-D architectural analyses, we have studied the relation between various measures of architectural anisotropy, the influence of connectivity and trabecular material anisotropy on the elastic anisotropy of cancellous bone. We have reached the following conclusions: 1) the elastic anisotropy of the trabecular hone material seems only to have marginal influence on the anisotropic elastic properties of cancellous bone, 2) different architectural anisotropy measures are highly correlated, and methods studied are all highly related to the elastic anisotropy, and 3) connectivity has only marginal influence on elastic properties.

The ability to determine cancellous bone mechanical properties either indirectly from established architecture-mechanics relations or directly from architecture by the use of micro-FEM give promises for future in vivo evaluation of cancellous bone mechanical properties [20].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashby, M. F. The mechanical properties of cellular solids. Metall Trans A, 14-A:1755–1769, 1983.

    Google Scholar 

  2. Cowin, S. C. The relationship between the elasticity tensor and the fabric tensor. Mech Mater, 4:137–147, 1985.

    Article  Google Scholar 

  3. Cruz-Orive, L. M., Karlsson, L. M., Larsen, S. E., and Wainschtein, F. Characterizing anisotropy: a new concept. Micron Microscopica Acta, 23:75–76, 1992.

    Google Scholar 

  4. DeHoff, R. T. Quantitative serial sectioning analysis: preview. J Microsc, 131:259–263, 1983.

    Google Scholar 

  5. Feldkamp, L. A. and Davis, L. C. Topology and elastic properties of depleted media. Phys Rev B, 37:3448–3453, 1988.

    Article  Google Scholar 

  6. Feldkamp, L. A., Goldstein, S. A., Parfitt, A. M., Jesion, G., and Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res, 4:3–11, 1989.

    CAS  Google Scholar 

  7. Gibson, L. J. The mechanical behaviour of cancellous bone. J Biomech, 18:317–328, 1985.

    Article  CAS  Google Scholar 

  8. Giger, H. Grundgleichungen der stereologie i. Metrika, 16:43–57, 1970.

    Google Scholar 

  9. Goldstein, S. A. The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech, 20:1055–1061, 1987.

    CAS  Google Scholar 

  10. Goldstein, S. A., Goulet, R., and McCubbrey, D. Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int, 53 Suppl 1:S127–32; discussion S132–3, 1993.

    Google Scholar 

  11. Goldstein, S. A., Hollister, S. J., Kuhn, J. L., and Kikuchi, N. The mechanical and remodeling properties of trabecular hone. In Mow, V. C., Ratcliffe, A., and Woo, S. L. Y., editors, Biomechanics of diarthrodial joints., volume II, pages 61–81, New York, 1990. Springer.

    Google Scholar 

  12. Goulet, R. W., Goldstein, S. A., Ciarelli, M. J., Kuhn, 3. L., Brown, M. B., and Feldkamp, L. A. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech, 27:375–389, 1994.

    CAS  Google Scholar 

  13. Gundersen, H. J., Boyce, R. W., Nyengaard, J. R., and Odgaard, A. The conneulor: unbiased estimation of connectivity using physical disectors under projection. Bone, 14:217–222, 1993.

    Article  CAS  Google Scholar 

  14. Harrigan, T. P. and Mann, R. W. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci, 19:761–767, 1984.

    Article  CAS  Google Scholar 

  15. Hildebrand, T. and Rüegsegger, P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc, 185:67–75, 1997.

    Article  Google Scholar 

  16. Hilliard, J. E. Determination of structural anisotropy. In Elias, H., editor, Proceedings of the second international congress for stereology., Berlin, 1967. Springer.

    Google Scholar 

  17. Hodgskinson, R. and Currey, J. D. The effect of variation in structure on the young’s modulus of cancellous bone: a comparison of human and non-human material. Proc Inst mech Eng [H], 204:115–121, 1990.

    CAS  Google Scholar 

  18. Kabel, J., Odgaard, A., van Rietbergen, B., and Huiskes, R. Connectivity and the elastic properties of cancellous bone Bone, 1998. submitted

    Google Scholar 

  19. Kabel, J., van Rietbergen, B., Dalstra, M., Odgaard, A., and Huiskes, R. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone J Biomech, 1998. submitted.

    Google Scholar 

  20. Kinney, J. H., Lane, N. E., and Haupt, D. L. In vivo, three-dimensional microscopy of trabecular bone. J Bone Miner Res, 10:264–270, 1995.

    Article  CAS  Google Scholar 

  21. Kleerekoper, M., Villanueva, A. R., Stanciu, J., Rao, D. S., and Parfitt, A. M. ‘The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int, 37:594–597, 1985.

    CAS  Google Scholar 

  22. Nafei, A. Properties of growing trabecular bone. Ph. D. thesis, University of Aarhus, 1993.

    Google Scholar 

  23. Odgaard, A. Three-dimensional methods for quantification of cancellous bone architecture. Bone, 20:315–328, 1997.

    Article  CAS  Google Scholar 

  24. Odgaard A. and Gundersen, H. J. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone, 14:173 182, 1993

    Article  Google Scholar 

  25. Odgaard., k., Jensen E. B., and Gundersen, H. J. Estimation of structural anisatropy based on volume orientation. a new concept. J Microsc, 157 (Pt 2):149–162, 1990.

    CAS  Google Scholar 

  26. Odgaard, A., Kabel, J., van Rietbergen, B., Dalstra, M., and Huiskes, R. Fabric and elastic principal directions of cancellous bone are closely related. J Biomech, 30:487–495, 1997.

    CAS  Google Scholar 

  27. Parfitt, A. M., Mathews, C. H. E., Villaneuva, A. R., Kleerekoper, M., Frame, B., and Rao, D. S. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. J Clin Invest, 72:1396–1409, 1983.

    Article  CAS  Google Scholar 

  28. Rice, J. C., Cowin, S. C., and Bowman, J. A. On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech, 21:155–168, 1988.

    Article  CAS  Google Scholar 

  29. Smit, T. K., Schneider, E., and Odgaard, A. Star length distribution: a volume orientation based concept for the characterization of structural anisotrophy. J Microsc, 1998. submitted.

    Google Scholar 

  30. Snyder, B. D. and Hayes, W. C. Multiaxial structure-property relations in trabecular bone. In Mow, V. C., Ratcliffe, A., and Woo, S. E. Y., editors, Biomechanics of diarthrodial joints. Vol. II., pages 31–59, New York, 1990. Springer.

    Google Scholar 

  31. Thomsen, J. S., Ebbesen, E. N., and Mosekilde, L. Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies. Bone, 22:153–163, 1998.

    Article  CAS  Google Scholar 

  32. Turner, C. H., Cowin, S. C., Rho, J. Y., Ashman, R. B., and Rice, J. C. The fabric dependence of the orthotropic elastic constants of cancellous bone. J Biomech, 23:549–561, 1990.

    CAS  Google Scholar 

  33. van Rietbergen, B., Odgaard, A., Kabel, J., and Huiskes, R. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech, 29:1653–1657, 1996.

    Google Scholar 

  34. van Rietbergen, B., Weinans, H., Huiskes, R., and Odgaard, A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech, 28:69–81, 1995.

    Google Scholar 

  35. Weibel, E. R. Stereological methods. Volume 2: Theoretical foundations.. Academic Press, 1980.

    Google Scholar 

  36. Whitehouse, W. J. The quantitative morphology of anisotropic trabecular bone. J Microsc, 101:153–168, 1974.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this paper

Cite this paper

Odgaard, A., Kabel, J., Van Rietbergen, B., Huiskes, R. (1999). Architectural 3-D Parameters and Anisotropic Elastic Properties of Cancellous Bone. In: Pedersen, P., Bendsøe, M.P. (eds) IUTAM Symposium on Synthesis in Bio Solid Mechanics. Solid Mechanics and its Applications, vol 69. Springer, Dordrecht. https://doi.org/10.1007/0-306-46939-1_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46939-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5615-8

  • Online ISBN: 978-0-306-46939-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics