Skip to main content

On the Optimality of Bone Microstructure

  • Conference paper
IUTAM Symposium on Synthesis in Bio Solid Mechanics

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 69))

Abstract

This paper attempts to answer the question: “Does bone microstructure have optimal stiffness?” In order to answer the question, stiffness optimized microstructures are qualitatively compared with bone structure and quantitatively compared with theoretical bounds on material stiffness. The answer to the question is no - in most cases bone does not have optimal stiffness and thus there must be other objectives at work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bendsøe, M. P. (1995). Optimization of Structural Topology, Shape and Material. Springer.

    Google Scholar 

  • Carter, D. R. (1984). Mechanical loading histories and cortical bone remodelling. Calcified Tissue International, 36:S19–S24.

    Google Scholar 

  • Carter, D. R. and Hayes, W. C. (1977). The compressive bahaviour of bone as a two-phase porous structure. The journal of bone and joint surgery, 59-A(7):954–961.

    Google Scholar 

  • Francfort, G. and Murat, F. (1986). Homogenization and optimal bounds in linear elasticity. Archieves of Rational Mechanical Analysis, 94:307–334.

    Google Scholar 

  • Gibiansky, L. V. and Torquato, S. (1998). Rigorous connection between physical properties of porous rocks. Journal of Geophysics Research (to appear).

    Google Scholar 

  • Gibson, L. J. and Ashby, M. F. (1988). Cellular Solids, Struture and Properties. Pergamon Press, Oxford, England.

    Google Scholar 

  • Hashin, Z. (1962). The elastic moduli of heterogeneous materials. ASME Journal of Applied Mechanics, 29:143–150.

    CAS  Google Scholar 

  • Hashin, Z. and Shtrikman, S. (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, pages 127–140.

    Google Scholar 

  • Huiskes, R., Weihnans, H., Grootenboer, H. J., Dalstra, M., Fudala, B., and Sloof, T. J. (1987). Adaptive bone-remodelling theory applied to prosthetic-design analysis. Journal of Biomaechanics, 20(11/12): 1135–1150.

    CAS  Google Scholar 

  • Lipton, R. (1994). Optimal bounds on effective elastic tensors for orthotropic composites. Proceedings of the Royal Society of London, A, 443:399–410.

    Google Scholar 

  • Pettermann, H. E., Reiter, T. J., and Rammerstorfer, F. G. (1997). Computational simulation of internal bone remodeling. Archives of Computational Methods in Engineering, State of the art reviews, 4(4):295–323.

    Google Scholar 

  • Rodriques, H., Jacobs, C., Guedes, J. M., and Bendsøe, M. P. (1998). Global and local material optimization models applied to anisotropic bone adaption. In Pedersen, P. and Bendsøe, M. P., editors, Synthesis in bio solid mechanics, Dordrecht. IUTAM, Kluwer.

    Google Scholar 

  • Sigmund, O. (1994a). Design of material structures using topology optimization PhD thesis, Department of Solid Mechanics, Technical University of Denmark.

    Google Scholar 

  • Sigmund, O. (1994b). Materials with prescribed constitutive parameters: an inverse homogenization problem. International Journal of Solids and Structures, 31(17):2313–2329.

    Article  Google Scholar 

  • Sigmund, O. (1998). A new class of extremal composites. In preparation.

    Google Scholar 

  • Sigmund, O. and Petersson, J. (1998). Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. To appear in Structural Optimization.

    Google Scholar 

  • Sigmund, O. and Torquato, S. (1997). Design of materials with extreme thermal expansion using a three-phase topology optimization method. Journal of the Mechanics and Physics of Solids, 45(6):1037–1067.

    Article  CAS  Google Scholar 

  • Sigmund, O., Torquato, S., and Aksay, I. A. (1998). On the design of 1–3 piezocomposites using topology optimization. Journal of Materials Research, 13(4):1038–1048.

    CAS  Google Scholar 

  • Vigdergauz, S. B. (1994). Three-dimensional grained composites of extreme thermal properties. Journal of the Mechanics and Physics of Solids, 42(5):729–740.

    Article  Google Scholar 

  • Wolff, J. (1892). Das Gesetz der Transformation der Knochen. Hirchwald, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this paper

Cite this paper

Sigmund, O. (1999). On the Optimality of Bone Microstructure. In: Pedersen, P., Bendsøe, M.P. (eds) IUTAM Symposium on Synthesis in Bio Solid Mechanics. Solid Mechanics and its Applications, vol 69. Springer, Dordrecht. https://doi.org/10.1007/0-306-46939-1_20

Download citation

  • DOI: https://doi.org/10.1007/0-306-46939-1_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5615-8

  • Online ISBN: 978-0-306-46939-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics