Skip to main content

Experimental Micromechanics and Viscoelasticity of Biological and Bioprotective Materials

  • Conference paper
IUTAM Symposium on Synthesis in Bio Solid Mechanics

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 69))

  • 316 Accesses

Abstract

The properties of composite materials including those of biological origin depend very much upon structure. We consider here viscoelastic properties in which the stiffness depends on time or frequency, and microelastic properties in which there is dependence of stress upon spatial gradients of strain. The complex structural hierarchy of composite materials, particularly biological ones, gives rise to several viscoelastic processes, however the microelastic response is principally governed by the largest size structural elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ascenzi. A., Baschieri P., and Benvenuti, A., The torsional properties of selected single osteons, J. Biomechanics. 27, 875–884, (1994).

    CAS  Google Scholar 

  • Anderson, W. B. and Lakes, R. S., “Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam”, Journal of Materials Science, 29, 6413–6419, (1994).

    Article  CAS  Google Scholar 

  • Anderson, W. B., Lakes, R. S., and Smith, M. C., “Holographic evaluation of warp in the torsion of a bar of cellular solid”, Cellular Polymers. 14, 1–13. (1995).

    Google Scholar 

  • Brodt, M.. Cook, L. S., and Lakes, R. S.. “Apparatus for measuring viscoelastic properties over ien decades: refinements”, Review of Scientific Instruments, 66(11). 5292–5297 (1995).

    Article  CAS  Google Scholar 

  • Brooks, D. B., Burstein, A. H., and Frankel, V. H., The biomechanics of torsional fractures: the stress concentration effect of a drill hole, J. Bone Jnr. Surg. 52A. 507–514, (1970).

    Google Scholar 

  • Eringen, A. C. “Theory of micropolar elasticity”, in Fracture, Ed. Liebowitz, (1968).

    Google Scholar 

  • Garner, E., Lakes, R. S., Lee, T. A., Swan, C., and Stewart, K., unpublished report, (1998).

    Google Scholar 

  • Gauthier, R. D. and Jahsman., W. E., “A quest for micropolar elastic constants” J. Applied Mechanics, 42,, 369–374, (1975).

    Google Scholar 

  • Huiskes, R., Janssen, J. D. and Slooff. T. J., “A detailed comparison of experimental and theoretical stress analyses of a human femur”;, in Mechanical Properties of Bone Joint ASME-ASCE Applied Mechanics, Fluids Engineering and Bioengineering Conference, Boulder, Colorado. 22–24 June, (1981).

    Google Scholar 

  • Lakes, R. S., “Dynamical study of couple stress effects in human compact bone”, Journal of Biomechanical Engineering, 104, 6–11, (1982).

    Article  CAS  Google Scholar 

  • Lakes, R. S., “Experimental microelasticity of two porous solids”, International Journal of Solids and Structures 22 55–63, (1986).

    Article  Google Scholar 

  • Lakes, R. S. “Foam structures with a negative Poisson’s ratio”, Science, 235 1038–1040 (1987).

    CAS  Google Scholar 

  • Lakes, R. S., “On the torsional properties of single osteons”, J. Biomechanics, 28, 1409–1410, (1995)

    CAS  Google Scholar 

  • Lakes, R. S., Viscoelastic solids, CRC Press, Boca Raton, FL, in press, (1998).

    Google Scholar 

  • Lakes, R. S., Katz, J. L. and Sternstein, S. S., “Viscoelastic properties of wet cortical bone-1. Torsional and biaxial studies”, J. Biomechanics 12, 657–678, (1979).

    CAS  Google Scholar 

  • Lakes, R. S., Katz, J. L., “Viscoelastic properties of wet cortical bone: Part II. relaxation mechanisms. Journal of Biomechanics, 12, 679–687, (1979).

    CAS  Google Scholar 

  • Lakes, R. S. and Saha, S., “Cement line motion in bone,” Science, 204 501–503, (1979).

    CAS  Google Scholar 

  • Mauch, M., Currey, J. D., and Sedman. A. J., “Creep fracture in bones with different stiffnesses”. J Biomechanics, 25, 11–16, (1992).

    CAS  Google Scholar 

  • Mindlin. R. D., “Stress functions for a Cosserat continuum”, Int. J. Solids and Structures., 1. 265–271. (1965).

    Google Scholar 

  • Park, H. C. and Lakes, R. S., “Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent, J. Biomechanics. 19, 385–397. (1986).

    CAS  Google Scholar 

  • Park, H. C. and Lakes, R. S. “Torsion of a micropolar elastic prism of square cross section”, Int. J. Solids, Structures, 23, 485–503 (1987).

    Article  Google Scholar 

  • Shipkowitz, A. T., Chen. C. P. and Lakes, R. S., “Characterization of high-loss viscoelastic elastomers”, Journal of Materials Science, 23, 3660–3665, (1988).

    Article  CAS  Google Scholar 

  • Stewart, K., Swan, C., Lakes, R. S.. and Garner, E., unpublished report, (1998).

    Google Scholar 

  • Yang, J. F. C., and Lakes, R. S., “Transient study of couple stress in compact bone: torsion”, Journal of Biomechanical Engineering, 103, 275–279, (198 1).

    Article  Google Scholar 

  • Yang, J. F. C., and Lakes, R. S., “Experimental study of micropolar and couple stress elasticity in bone in bending”, Journal of Biomechanics, 15, 91–98, (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderic Lakes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this paper

Cite this paper

Lakes, R., Swan, C., Garner, E., Lee, T., Stewart, K. (1999). Experimental Micromechanics and Viscoelasticity of Biological and Bioprotective Materials. In: Pedersen, P., Bendsøe, M.P. (eds) IUTAM Symposium on Synthesis in Bio Solid Mechanics. Solid Mechanics and its Applications, vol 69. Springer, Dordrecht. https://doi.org/10.1007/0-306-46939-1_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-46939-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5615-8

  • Online ISBN: 978-0-306-46939-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics