Skip to main content

Fracture Gap Movement as a Function of Musculo-Skeletal Loading Conditions During Gait

  • Conference paper
IUTAM Symposium on Synthesis in Bio Solid Mechanics

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 69))

  • 301 Accesses

Reprinted in part from the Journal of Biomechanics, 31, Duda et al.,Analysis of interfragmentary movement as a function of musculoskeletal loading conditions in sheep, pp.201–210 and Duda et al.,A method to determine the 3-D stiflness offracture fixation devices and its application to predict inter-fragmentary movement,pp.247–252, 1998, with permission from Elsevier Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. An, K. N., Kaufman, K. R. and Chao, E. Y. S. (1989) Physiological considerations of muscle force through the elbow joint. J. Biomech. 22, 1249–1256.

    Article  CAS  Google Scholar 

  2. An, K. N., Kwak, B. M., Chao, E. Y. S. and Morrey, B. F. (1984) Determination of muscle and joint forces: A new technique to solve the indeterminate problem. J.Biomech.Engng. 106, 364–367.

    CAS  Google Scholar 

  3. Bergmann, G., Siraky, J. and Rohlmann, A. (1984) A comparison of hip joint forces in sheep, dog and man. J. Biomech. 17, 907–921.

    Article  CAS  Google Scholar 

  4. Brand, R. A., Crowninshield, R. D., Wittstock, C. E., Pedersen, D. R., Clark, C. R. and van Krieken, F. M. (1982) A model of lower extremity muscular anatomy. J.Biomech.Engng. 104, 304–310.

    Article  CAS  Google Scholar 

  5. Brand, R. A., Pedersen, D. R. and Friederich, J. A. (1986) The sensitivity of muscle force predictions to changes in physiological cross-sectional area. J.Biomech. 19, 589–596.

    CAS  Google Scholar 

  6. Chao, E. Y. S., Lynch, J. D. and Vanderploeg, M. J. (1993) Simulation and animation of musculoskeletal joint system. J.Biomech.Engng. 115, 562–568.

    Article  CAS  Google Scholar 

  7. Chao, E. Y. S. and Rim, K. (1973) Application of optimization principles in determining the applied moments in human leg joints during gait. J.Biomech. 6, 497–510.

    Article  CAS  Google Scholar 

  8. Claes, L. (1981) Experimentelle und theoretische Untersuchungen zur Biomechanik der Osteosynthese. habil., University of Ulm, Ulm.

    Google Scholar 

  9. Claes, L., Wilke, H.-J., Augat, P., Rübenacker, S. and Margevicius, K. J. (1995) Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin.Biomech. 10, 227–234.

    Article  Google Scholar 

  10. Cristofolini, L., Viceconti, M., Toni, A. and Guinti, A. (1995) Influence of thigh muscles on the axial strain in a proximal femur during early stance in gait. J.Biomech. 28, 17–624.

    Article  Google Scholar 

  11. Crowninshield, R. D. (1978) Use of optimization techniques to predict muscle forces J.Biomech.Engng. 100, 88–92.

    Google Scholar 

  12. Cunningham, J. L., Evans, M. and Kenwright, J. (1989) Measurement of fracture movement in patients treated with unilateral external skeletal fixation. J.Biomed.Engng 11, 118–22.

    Article  CAS  Google Scholar 

  13. Delp, S. L., Loan, J. P., Hoy, M. G., Zajac, F. E., Topp, E. L. and Rosen, J. M. (1990) An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE.Trans.Biomed.Eng. 37, 757–767.

    Article  CAS  Google Scholar 

  14. Duda, G. N., Brand, D., Freitag, S., Lierse, W. and Schneider, E. (1996) Variability of femoral muscle attachments. J.Biomech. 29, 1183–1190.

    Article  Google Scholar 

  15. Duda, G. N. and Claes, L. (1996) Prediction and control of 3-Dinterfragmentary movement in fracture healing. Trans. ISFR. Ottawa, 24.

    Google Scholar 

  16. Duda, G. N. and Claes, L. (1997) Prediction of 3-Dinterfragmentary movement in fracture healing: A sheep model. Trans. EORS. Barcelona, 260.

    Google Scholar 

  17. Duda, G. N., Schneider, E., Brand, D. and Chao, E. Y. S. (1995) Significance of variation of muscle attachment location on femoral loads. Trans. CORS. San Diego, 179.

    Google Scholar 

  18. Duda, G. N., Schneider, E., Brand, D. and Lierse, W. (1994) Forces and Moments Along the Human Femur Due to Muscular Activity. Trans. ORS. New Orleans, 85.

    Google Scholar 

  19. Duda, G. N., Schneider, E. and Chao, E. Y. S. (1997) Internal forces and moments in the femur during walking. J. Biomech. 30, 933–941.

    Article  CAS  Google Scholar 

  20. Fröhling, M., Krieg, M., Pussel, V. and Ruder, H. (1993) Optimization of the locomotor system-a universal biomechanical approach. Trans. ISB, Paris 0, 428–429.

    Google Scholar 

  21. Ghista, D. N., Toridis, T. G. and Srinivasan, T. M. (1976) Human Gait Analysis: Determination of Instantaneous Joint Reaction Forces, Muscle Forces and the Stress Distribution in Bone Segments Part 11. Biomed.Tech.(Berlin). 21, 66–74.

    CAS  Google Scholar 

  22. Goodship, A. E., Kelly, D. J., Rigby, H. S., Watkins, P. E. and Kenwright, J. (1988) The effect of different regimes of axial micromovement on the healing of experimental tibial fractures. In Biomechanics: Basic and applied research (Edited by Bergmann G., Kölbel R., Rohlmann A.), pp. 441–446. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  23. Goodship, A. E. and Kenwright, J. (1985) The influence of induced micromovement upon the healing of experimental tibial fractures. JBJS, Br 67, 650–655.

    CAS  Google Scholar 

  24. Goodship, A. E., Watkins, P. E., Rigby, H. S. and Kenwright, J. (1993) The role of fixator frame stiffness in the control of fracture healing. An experimental study. J.Biomech. 26, 1027–1035.

    CAS  Google Scholar 

  25. Hoffmann, R., McKellop, H., Sarmiento, A., Lu, B. and Ebramzadeh, E. (1991) Three-dimensional measurement of fracture gap motion. Biomechanical study of experimental tibial fractures with anterior clasp fixator and ring fixator. Unfallchirurg 94, 395–400.

    CAS  Google Scholar 

  26. Hutzschenreuter, P. O., Sekler, E. and Faust, G. (1993) Loads on muscles, tendons and bones in the hind extremities of sheep-a theoretical study. Anat Histol Embryol 22, 67–82.

    CAS  Google Scholar 

  27. Jensen, R. H. and Davy, D. T. (1975) An investigation of muscle lines of action about the hip: Acentroid line approach vs the straight line approach. J.Biomech. 8, 103–110.

    Article  CAS  Google Scholar 

  28. Kenwright, J. and Goodship, A. E. (1989) Controlled mechanical stimulation in the treatment of tibial fractures. Clin.Orthop. 241, 36–47.

    Google Scholar 

  29. Kenwright, J., Richardson, J. B., Cunningham, J. L., White, S. H., Goodship, A. E., Adams, M. A., Magnussen, P. A. and Newman, J. H. (1991) Axial movement and tibial fractures. A controlled randomized trial of treatment. JBJS, Br 73, 654–659.

    CAS  Google Scholar 

  30. Kristiansen, T., Fleming, B., Neale, G., Reinecke, S. and Pope, M. H. (1987) Comparative study of fracture gap motion in external fixation. Clin.Biomech. 2, 191–195.

    Article  Google Scholar 

  31. Lanyon, L. E. (1976) The measurements of bone strain “in vivo”. Acta Orthop Belg, Suppl 1, 98–108.

    Google Scholar 

  32. Lippert, F. G., III and Hirsch, C. (1974) The three dimensional measurement of tibia fracture motion by photogrammetry. Clin.Orthop. 105, 130–143.

    Google Scholar 

  33. McKibbin, B. (1978) The biology of fracture healing in long bones. JBJS, Br 60, 150–162.

    Google Scholar 

  34. Patriarco, A. G., Mann, R. W., Simon, S. R. and Mansours, J. M. (1981) An evaluation of the approaches of optimization models in the prediction of muscle forces during human gait J.Biomech. 14, No. 8, 513–525.

    Article  CAS  Google Scholar 

  35. Pauwels, F. (1951) Über die Bedeutung der Bauprinzipien des Stütz-und Bewegungsapparates für die Beanspruchung des Röhrenknochens. Acta Anat.(Basel). 12, 207–227.

    CAS  Google Scholar 

  36. Perren, S. M. (1974) Biomechanik der Frakturheilung. Orthopädie 3, 135–139.

    Google Scholar 

  37. Perren, S. M. (1992) Biomechanical basis of fracture treatment. Orthopäde 21, 3–10.

    CAS  Google Scholar 

  38. Pierrynowski, M. R. (1982) A physiological model for the solution of individual muscle forces during normal human walking, Ph.D. thesis. Simon Fraser University, Vancouver.

    Google Scholar 

  39. Raftopoulos, D. D. and Qassem, W. (1987) Three-dimensional curved beam stress analysis of the human femur. J.Biomed.Eng. 9, 356–366.

    CAS  Google Scholar 

  40. Raikova, R. (1992) A General Approach for Modeling and Mathematical Investigation of the Human Upper Limb. J.Biomech. 25, 857–867.

    Article  CAS  Google Scholar 

  41. Rohlmann, A., Mössner, U., Bergmann, G. and Kölbel, R. (1982) Finite-element-analysis and experimental investigation of stresses in a femur. J.Biomed.Eng. 4, 241–246.

    CAS  Google Scholar 

  42. Rybicki, E. F., Simonen, F. A. and Weis, E. B. (1972) On the mathematical analysis of stress in the human femur. J.Biomech. 5, 203–215.

    Article  CAS  Google Scholar 

  43. Schenk, R. K. (1986) Histophysiology of bone remodeling and bone repair. In Perspectives on Biomaterials (Edited by Lin O. C., Chao E. Y. S.), pp. 75–94. Elsevier Science, Amsterdam.

    Google Scholar 

  44. Schenk, R. K., Muller, J. and Willenegger, H. (1986) Experimentell-histologischer Beitrag zur Entstehung und Behandlung von Pseudarthrosen. Hefte zur Unfallheilkunde 94, 15–24.

    Google Scholar 

  45. Seireg, A. and Arvikar, R. J. (1973) A mathematical model for evaluation of forces in lower extremities of the musculo-skeletal system. J.Biomech. 6, 313–326.

    Article  CAS  Google Scholar 

  46. Stunner, K. M. (1988) Histologie und Biomechanik der Frakturheilung unter den Bedingungen des Fixateur externe. Hefie zur Unfallheilkunde 200, 233–242.

    Google Scholar 

  47. Winter, D. A. (1990) Biomechanics and motor control of human movement. Wiley-Interscience, New York.

    Google Scholar 

  48. Wissing, H., Stunner, K. M. and Breidenstein, G. (1990) Die Wertigkeit verschiedener Versuchstierspecies für experimentelle Untersuchungen am Knochen. Hefte zur Unfallheilkunde 212, 479–488.

    Google Scholar 

  49. Wu, J. J., Shyr, H. S., Chao, E. Y. S. and Kelly, P. J. (1984) Comparison ofosteotomy healing under external fixation devices with different stiffness characteristics. JBJS, Am 66, 1258–1264.

    CAS  Google Scholar 

  50. Yamagishi, M. and Yoshimura, Y. (1955) The biomechanics of fracture healing. JBJS, Am 37, 1035–1068.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this paper

Cite this paper

Duda, G.N. et al. (1999). Fracture Gap Movement as a Function of Musculo-Skeletal Loading Conditions During Gait. In: Pedersen, P., Bendsøe, M.P. (eds) IUTAM Symposium on Synthesis in Bio Solid Mechanics. Solid Mechanics and its Applications, vol 69. Springer, Dordrecht. https://doi.org/10.1007/0-306-46939-1_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-46939-1_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5615-8

  • Online ISBN: 978-0-306-46939-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics