Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 62))

  • 307 Accesses

Abstract

The paper presents a new FEM-based crystallographic model. The major task of the model is to investigate the inhomogeneous elastoplastic processes on the grain level of deforming polycrystals. The rate-dependent constitutive equations are presented for small deformations of pure fcc metal crystals in the low temperature range. Hardening is regarded via the development of kinematic and isotropic variables. Comprehensive simulations show that the model is capable to predict the typical features of polycrystalline behaviour. Here, special attention is paid to the mechanisms that control the formation of strain localizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, R. and Panchanadeeswaran, S. (1995) Effects of Grain Interactions on Grain Deformation and Local Texture in Polycrystals, Acta Metall. Mater. 43(No.7), 2701–2719.

    Google Scholar 

  2. Essmann, U. and Mughrabi, H. (1979) Annihilation of Dislocations during Tensile and Cyclic Deformation and Limits of Dislocation Densities, Phil. Mag. A40(No.6), 731–756.

    Google Scholar 

  3. Estrin, Y. (1987) Stoffgesetze der plastischen Verformung und Instabilitaten des plastischen Fließens, VDI Forschungsheft 642, 1–48.

    Google Scholar 

  4. Edwards, E.H. and Washburn, J. (1954) Strain Hardening of Latent Slip Systems in Zinc Crystals, Trans. AIME 200, 1239.

    Google Scholar 

  5. Franciosi, P., Berveiller, M. and Zaoui, A. (1980) Latent Hardening in Copper and Aluminium Single Crystals, Acta Metall. 28, 273–283.

    Google Scholar 

  6. Frost, H.J. and Ashby, M.F. (1982) Deformation-Mechanism-Maps, the Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford.

    Google Scholar 

  7. Giese, A. and Estrin, Y. (1993) Mechanical Behaviour and Microstructure of Fatigued Aluminium Single Crystals, Scripta Metall. Mater. 28, 803.

    Article  Google Scholar 

  8. Harder, J. (1997) Simulation lokaler Fließvorgänge in Polykristallen, Braunschweig Series on Mechanics 28, Mechanik-Zentrum TU Braunschweig.

    Google Scholar 

  9. Harren, S.V. and Asaro, R.J. (1989) Nonuniform Deformations in Polycrystals and Aspects of the Validity of the Taylor Model, J. Mech. Phys. Solids 37(No.2), 191–232.

    Google Scholar 

  10. Havliček F., Kratochvil, J., Tokuda, M. and Lev, V. (1990) Finite Element Model of Plastically deformed Multicrystal, Int. J. of Plasticity 6, 281–291.

    Google Scholar 

  11. Jordan, E.H. and Walker, K.P. (1992) A Viscoplastic Model for Single Crystals, J. Eng. Mat. Tech. 114, 19–26.

    Google Scholar 

  12. Kocks, U.F., Argon, A.S. and Ashby, M.F. (1975) Thermodynamics and Kinetics of Slip, Progress Materials Science, Pergamon Press.

    Google Scholar 

  13. McLean (1957) Grain Boundaries in Metals, Oxford University Press, London.

    Google Scholar 

  14. Méric, L., Cailletaud, G. and Gasperini, M. (1994) F.E. Calculations of Copper Bicrystal Specimens submitted to Tension-Compression Test, Acta Metall. Mater. 42(No.3), 921–935.

    Google Scholar 

  15. Ohashi, T. (1987) Computer Simulation of Non-Uniform Multiple Slip in Face Centered Cubic Bicrystals, Trans. Japan Inst. Met. 28(No.11), 906–915.

    Google Scholar 

  16. Paufler, P. and Schulze, G. (1978) Physikalische Grundlagen mechanischer Festkörpereigenschaften, Vieweg-Verlag, Braunschweig.

    Google Scholar 

  17. Teodosiu, C., Raphanel, J.L. and Tabourot, L. (1993) Finite Element Simulation of the Large Elastoplastic Deformation of Multicrystals, in Theodosiu, Raphanel and Sidoroff (eds.), Mecamat’91, Balkena, Rotterdam, 153–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this paper

Cite this paper

Steck, E.A., Harder, J. (1999). Finite Element Simulation of Local Plastic Flow in Polycrystals. In: Bruhns, O.T., Stein, E. (eds) IUTAM Symposium on Micro- and Macrostructural Aspects of Thermoplasticity. Solid Mechanics and its Applications, vol 62. Springer, Dordrecht. https://doi.org/10.1007/0-306-46936-7_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-46936-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5265-5

  • Online ISBN: 978-0-306-46936-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics