Skip to main content

Molecular Mechanics and Dynamics Simulations of Enzymes

  • Chapter
Computational Approaches to Biochemical Reactivity

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 19))

Conclusions

Since the first work describing a molecular dynamics simulation of a small protein was published (McCammon et al. 1977), there has been explosive growth in research concerned with theoretical studies of proteins and enzymes (McCammon and Harvey 1987; Brooks, et al 1988; Warshel 1991). Most of the studies have used empirical energy functions. This chapter describes the nature of the empirical energy function, its use in molecular mechanics calculations and molecular dynamics simulations and presents several applications to enzymes. Most important is the result that starting with x-ray structures of unproductive and static complexes of the enzyme formed with pseudosubstrates and inhibitors, simulations of the enzyme complexed with true substrates can provide direct information on the positions and dynamics of catalytically important residues. This makes it possible to explore the contribution of various amino acids to the enzyme reaction, even without a complete calculation of the reaction path. The latter requires extended potential surfaces of the QM/MM type that include bond rupture and bond formation.

Large scale conformational changes play an important role in enzyme function; several examples are reviewed in this chapter. Molecular mechanics calculations, in particular, energy minimization and normal mode calculations, as well as molecular dynamics simulations have been employed to provide an understanding of the mechanisms of such motions and their role in the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M. P. and Tildesley, D. J. (1989) Computer Simulation of Liquids. Oxford University Press, Oxford.

    Google Scholar 

  • Allinger, N. L., Miller, M. A., Van Catledge, F. A. and Hirsch, J. A. (1967) Conformational Analysis LVII. The Calculation of the Conformational Structures of Hydrocarbons by the Westheimer-Hendrickson-Wiberg Method, J. Am. Chem. Soc. 89, 4345–4357.

    Article  CAS  Google Scholar 

  • Allinger, N. L. and Sprague, J. T. (1973) Calculation of the Structures of Hydrocarbons Containing Delocalized Electronic Systems by the Molecular Mechanics Method., J. Am. Chem. Soc. 95, 3893–3907.

    CAS  Google Scholar 

  • Andersen, H. C. (1980) Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. 72, 2384–2393.

    Article  CAS  Google Scholar 

  • Anslyn, E. and Breslow, R. (1989) On the Mechanism of Catalysis by Ribonuclease: Cleavage and Isomerization of the Dinucletide UpU Catalyzed by Imidazole Buffers, J. Am. Chem. Soc. 111, 4473–4480.

    CAS  Google Scholar 

  • Arnold, G. E. and Ornstein, R. L. (1992) A molecular dynamics simulation of bacteriophage T4 lysozyme, Prot. Eng. 5, 703–714.

    CAS  Google Scholar 

  • Auld, D. S., Bertini, I., Donaire, A., Messori, L. and Moratal, J. M. (1992) pH-Dependent Properties of Cobalt(II) Carboxypeptidase A-Inhibitor Complexes, Biochemistry 31, 3840–3846.

    Article  PubMed  CAS  Google Scholar 

  • Banci, L., Bertini, I. and La Penna, G. (1993) A Molecular Dynamics Study of Carboxypeptidase A: Effect of Protonation of Glu 270, Inorg. Chem. 32, 2207–2211.

    CAS  Google Scholar 

  • Banci, L., Bertini, I. and La Penna, G. (1994) The Enzymatic Mechanism of Carboxypeptidase: A Molecular Dynamics Study, Proteins: Struct. Func. Gen. 18, 186–197.

    CAS  Google Scholar 

  • Banci, L., Schroder, S. and Kollman, P. A. (1992) Molecular Dynamics Characterization of the Active Cavity of Carboxypeptidase A and Some of Its Inhibitor Adducts, Proteins: Struct. Func. Gen 13, 288–305.

    CAS  Google Scholar 

  • Banks, R. D., Blake, C. C. F., Evans, P. R., Haser, R., Rice, D. W., Hardy, G. W., Merrett, M. and Phillips, A. W. (1979) Sequence, structure and activity of phosphoglycerate kionase: a possible hinge-bending enzyme, Nature 279, 773–777.

    Article  PubMed  CAS  Google Scholar 

  • Barton, D. H. R. (1948) Interactions between Non-bonded Atoms, and the Structure of cis-Decalin, J. Chem. Soc. 340–342.

    Google Scholar 

  • Bash, P. A., Field, M. J., Davenport, R. C., Petsko, G. A., Ringe, D. and Karplus, M. (1991) Computer Simulation and Analysis of the Reaction Pathway of Triosephosphate Isomerase, Biochemistry 30, 5826–5832.

    Article  PubMed  CAS  Google Scholar 

  • Bashford, D., Karplus, M. and Canters, G. W. (1988) Electrostatic Effects of Charge Perturbations Introduced by Metal Oxidation in Proteins. A Theoretical Analysis, J. Mol. Biol. 203, 507–510.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, W. C. and Seitz, T. A. (1980) Structure of a complex between yeast hexokinase A and glucose, J. Mol. Biol. 140, 211–388.

    PubMed  CAS  Google Scholar 

  • Bennett, W. S. and Huber, R. (1984) Structural and Functional Aspects of Domain Motions in Proteins, Crit. Rev. Biochem. 15, 291–384.

    CAS  Google Scholar 

  • Berendsen, H. (1985). in Molecular Dynamics and Protein Structure. Western Springs, II., Polycrystal Book Service.

    Google Scholar 

  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. and Haak, J. R. (1984) Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81, 3684–3690.

    Article  CAS  Google Scholar 

  • Bertini, I. and Viezzoli, M. S. (1995). NMR of paramagnetic molecules: A contribution to the understanding of enzymic mechanisms. NATO ASI Ser., Ser. C459(Bioinorganic Chemistry). 93–104.

    Google Scholar 

  • Blackburn, P. and Moore, S. (1982). Pancreatic ribonuclease. The Enzymes, New York, Academic. 317–433.

    Google Scholar 

  • Blake, C. C. F., Johnson, L. N., Mair, G. A., North, A. C. T., Phillips, D. C. and Sarma, V. R. (1967) Crystallographic Studies of the activity of hen egg-white lysozyme., Proc. Royal Soc. London (Ser. B) 167, 378–388.

    CAS  Google Scholar 

  • Blake, C. C. F., Koenig, D. F., Mair, G. A., North, A. C. T., Phillips, D. C. and Sarma, V. R. (1965) Structure of Hen Egg-White Lysozyme. A Three-dimensional Fourier Synthesis at 2 A Resolution, Nature 206, 757–761.

    PubMed  CAS  Google Scholar 

  • Blake, C. C. F., Mair, G. A., North, A. C. T., Phillips, D. C. and Sarma, V. R. (1967) On the Conformation of the Hen egg-white lysozyme molecule., Proc. R. Soc. London. Ser. B 167, 365–377.

    CAS  Google Scholar 

  • Breslow, R. (1993) Kinetics and mechanism in RNA cleavage, Proc. Natl. Acad. Sci. USA 90, 1208–1211.

    PubMed  CAS  Google Scholar 

  • Breslow, R., Huang, D.-L. and Anslyn, E. (1989) On the mechanism of action of ribonucleases: Dinucleotide cleavage catalyzed by imidazole and Zn2+, Proc. Natl. Acad. Sci. USA 86, 1746–1750.

    PubMed  CAS  Google Scholar 

  • Breslow, R. and Wernick, D. (1976) On the Mechanism of Catalysis by Carboxypeptidase A, J Am. Chem. Soc. 98, 259–261.

    PubMed  CAS  Google Scholar 

  • Breslow, R. and Wernick, D. L. (1977) Unified picture of mechanisms of catalysis by Carboxypeptidase A, Proc. Natl. Acad. Sci. U. S. A. 74, 1303–1307.

    PubMed  CAS  Google Scholar 

  • Breslow, R. and Xu, R. (1993) Recognition and catalysis in nucleic acid chemistry, Proc. Natl. Acad. Sci. USA 90, 1201–1207.

    PubMed  CAS  Google Scholar 

  • Britt, B. M. and Peticolas, W. L. (1992) Raman Spectral Evidence for an Anhydride Intermediate in the Catalysis of Ester Hydrolysis by Carboxypeptidase A, J. Am. Chem. Soc. 114, 5295–5303.

    Article  CAS  Google Scholar 

  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. and M.,K. (1983) CHARMM: A Program for Macromolecular Energy Minimization and Dynamics Calculations, J. Comp. Chem 4, 187–217.

    CAS  Google Scholar 

  • Brooks, B. R. and Karplus, M. (1985) Normal Modes for Specific Motions of Macromolecules: Application to the Hinge-Bending Mode of Lysozyme, Proc. Natl Acad. Sci. USA 82, 4995–4999.

    PubMed  CAS  Google Scholar 

  • Brooks, C., L. III (1987) The influence of long-range force truncation on the thermodynamics of aqueous ionic solutions, J. Chem. Phys. 86, 5156–5162.

    Article  CAS  Google Scholar 

  • Brooks, C. L. III and Karplus, M. (1983) Deformable Stochastic Boundaries in Molecular Dynamics, J. Chem. Phys. 79, 6312–6325.

    CAS  Google Scholar 

  • Brooks, C. L. III, Karplus, M. and Pettitt, B. M. (1988) Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics. John Wiley & Sons

    Google Scholar 

  • Brooks, C. L., III Pettitt, B. M. and Karplus, M. (1985) Structural and energetic effects of truncating long range interactions in ionic and polar fluids, J. Chem. Phys. 83, 5897–5908.

    Article  CAS  Google Scholar 

  • Brooks, C. L. III Brünger, A. T. and Karplus, M. (1985) Active Site Dynamics in Protein Molecules: A Stochastic Boundary Molecular-Dynamics Approach, Biopolymers 24, 843–865.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, C. L. III and Karplus, M. (1989) Solvent Effects on Protein Motion and Protein Effects on Solvent Motion, J. Mol. Biol. 208, 159–181.

    Article  PubMed  CAS  Google Scholar 

  • Bruccoleri, R. E., Karplus, M. and McCammon, J. A. (1986) The Hinge-Bending Mode of a Lysozyme-Inhibitor Complex, Biopolymers 25, 1767–1802.

    Article  PubMed  CAS  Google Scholar 

  • Brünger, A. T., Brooks, C. L. III and Karplus, M. (1985) Active Site dynamics of ribonuclease. Proc. Natl. Acad. Sci. USA 82, 8458–8462.

    PubMed  Google Scholar 

  • Brünger, A. T. and Karplus, M. (1988) Polar Hydrogen Positions in Proteins: Empirical Energy Placement and Neutron Diffraction Comparison, Proteins: Struc. Func. Genet. 4, 148–156.

    Google Scholar 

  • Brünger, A. T. and Karplus, M. (1991) Molecular Dynamics Simulations with Experimental Restraints, Acc. Chem. Res. 24, 54–61.

    Google Scholar 

  • Brünger, A. T., Kuriyan, J. and Karplus, M. (1987) Crystallographic R Factor Refinement by Molecular Dynamics, Science 235, 458–460.

    PubMed  Google Scholar 

  • Bunton, C. A., Lewis, T. A., Llewellyn, D. R. and Vernon, C. I. (1955) Mechanisms of Reaction in the Sugar Series. Part I. The Acid-catalysed Hydrolysis of α-and β-Methyl and α and β-Phenyl D-Glucopyranosides., J. Chem. Soc. 4419–4423.

    Google Scholar 

  • Christianson, D. W. (1991) Structural Biology of Zinc, Adv. Protein Chem. 42, 281–355.

    PubMed  CAS  Google Scholar 

  • Christianson, D. W. and Lipscomb, W. N. (1985) Binding of a possible transition state analog to the active site of Carboxypeptidase A, Proc. Natl. Acad. Sci. USA 82, 6840–6844.

    PubMed  CAS  Google Scholar 

  • Christianson, D. W. and Lipscomb, W. N. (1989) Carboxypeptidase A, Ace. Chem. Res 22, 62–69.

    CAS  Google Scholar 

  • Christianson, D. W., Mangani, S., Shoham, G. and Lipscomb, W. N. (1989) Binding of D-Phenylalanine and D-Tyrosine to Carboxypeptidase A, J. Biol. Chem. 264, 12849–12853.

    PubMed  CAS  Google Scholar 

  • Collins, J. R., Burt, S., K. and Erickson, J. W. (1995) Flap opening in HIV-1 protease simulated by ‘activated’ molecular dynamics, Struc. Biol. 2, 334–338.

    CAS  Google Scholar 

  • Colman, R. F. (1990). Site-Specific Modification of Enzymes Sites. The Enzymes. 19, San Diego, Academic Press. 283–321.

    Google Scholar 

  • Colona-Cesari, F., Perahia, D., Karplus, M., Ecklund, H., Brandem, C. and Tapia, O. (1986) Interdomain Motion in Liver Alcohol Dehydrogenase: Structural and Energetic Analysis of the Hinge Bending Mode, J Biol. Chem. 261, 15273–15289.

    Google Scholar 

  • Cordes, F., Starikov, E. B. and Saenger, W. (1995) Initial State of an Enzymatic Reaction. Theoretical Prediction of Complex Formation in the Active Site of RNase T1, J. Am. Chem. Soc. 117, 10365–10372.

    Article  CAS  Google Scholar 

  • Eftink, M. R. and Biltonen, R. L. (1983) Energetics of Ribonuclease A Catalysis. 1. pH, Ionic Strength, and Solvent Isotope Dependence of the Hydrolysis of Cytidine Cyclic 2′,3′ Phosphate, Biochemistry 22, 5123–5134.

    PubMed  CAS  Google Scholar 

  • Eklund, H., Nordströdm, B., Zeppezauer, E., Söderlund, G., Ohlsson, I., Boiwe, T., Söderberg, B.-O., Tapia, O. and Brändén, C.-I. (1976) Three-dimensional Structure of Horse Liver Alcohol Dehydrogenase at 2.4 A Resolution. J. Mol. Biol. 102, 27–59.

    PubMed  CAS  Google Scholar 

  • Eklund, H., Samama, J.-P., Wallén, L., Brändén, C.-I., Åkeson, Å. and Jones, T. A. (1981) Structure of a Triclinic Ternary Complex of Horse Liver Alcohol Dehydrogenase at 2.9 Å Resolution, J. Mol. Biol. 146, 561–587.

    Article  PubMed  CAS  Google Scholar 

  • Elber, R. and Karplus, M. (1987) A Method for Determining Reaction Paths in Large Molecules: Application to Myoglobin, Chem. Phys. Lett. 139, 375–380.

    Article  CAS  Google Scholar 

  • Eriksson, E. A., Jones, T. A. and Liljas, A. (1988) Refined Structure of Human Carbonic Anhydrase II at 2.0 A Resolution, Proteins: Struct. Fund. Genet. 4, 274–282.

    CAS  Google Scholar 

  • Evans, J. N. S. (1992). NMR and enzymes. Pulsed Magn. Reson.: NMR. ESR. Opt. Oxford, UK., Oxford Univ. Press. 123–73.

    Google Scholar 

  • Fersht, A. (1985). Enzyme Structure and Mechanism. New York, N. Y., W.H. Freeman.

    Google Scholar 

  • Field, M. J., Bash, P. A. and Karplus, M. (1990) A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations, J. Comp. Chem. 11, 700–733.

    CAS  Google Scholar 

  • Fierke, C. A. and Hammes, G. G. (1995) Transient kinetic approaches to enzyme mechanisms. Methods Enzymol. (Enzyme Kinetics and Mechanism, Part D) 249, 3–37.

    CAS  Google Scholar 

  • Fischer, S. (1992) Curvilinear reaction coordinates of conformational changes in macromolecules. Application to rotamase catalysis., Thesis, Harvard University.

    Google Scholar 

  • Fischer, S. and Karplus, M. (1992) Conjugate Peak Refinement: An Algorithm for Finding Reaction Paths and Accurate Transition-States in Systems with Many Degrees of Freedom, Chem. Phys. Lett. 194, 252–261.

    Article  CAS  Google Scholar 

  • Fischer, S., Michnick, S. and Karplus, M. (1993) A Mechanism for Rotamase Catalysis by the FK506 Binding Protein (FKBP), Biochemistry 32, 13830–13837.

    Article  PubMed  CAS  Google Scholar 

  • Fleet, G. W. J. (1985) An Alternative Mechanism for the Mode of Inhibition of Glycosidase Activity by Polyhydroxylated Piperidines, Pyrrolidines, and Indolizidines: The Mechanism of Action of Some Glycosidases, Tetrahedron Lett. 26, 5073–5076.

    CAS  Google Scholar 

  • Franck, R. W. (1992) The Mechanism of β-Glycosidases: A Reassessment of Some Seminal Papers, Biorg. Chem. 20, 77–88.

    CAS  Google Scholar 

  • Gardell, S. J., Craik, C. S., Hilvert, D., Urdea, M. S. and Rutter, W. J. (1985) Site directed mutagenesis shows that tyrosine 248 of Carboxypeptidase A does not play a crucial role in catalysis, Nature 317, 551–555.

    Article  PubMed  CAS  Google Scholar 

  • Geoghegan, K. F., Galdes, A., Martinelli, R. A., Holmquist, B., Auld, D. S. and Vallee, B. L. (1983) Cryospectroscopy of Intermediates in the Mechanism of Carboxypeptidase A, Biochemistry 22, 2255–2262.

    PubMed  CAS  Google Scholar 

  • Gerlt, J. A. and Gassman, P. G. (1993) Understanding the Rates of Certain Enzyme-Catalyzed Reactions: Proton Abstraction from Carbon Acids, Acyl-Transfer Reactions, and Displacement Reactions of Phosphodiesters, Biochemistry 32, 1194311952.

    Article  Google Scholar 

  • Gerstein, M., Lesk, A. M. and Chothia, C. (1994) Structural Mechanisms for Domain Movements in Proteins, Biochemistry 22, 6739–6749.

    Google Scholar 

  • Gilbert, W. A., Fink, A. L. and Petsko, G. A. unpublished results

    Google Scholar 

  • Gilliland, G. L. and Quiocho, F. Q. (1981) Structure of the L-Arabinose-binding Protein From Escherichia coli at 2.4 Å Resolution, J. Mol. Biol. 146, 341–362.

    Article  PubMed  CAS  Google Scholar 

  • Gilson, M. K. and Honig, B. H. (1987) Calculation of electrostatic potentials in an enzyme active site, Nature 330, 84–86.

    Article  PubMed  CAS  Google Scholar 

  • Gorenstein, D. G., Wywicz, A. M. and Bode, J. (1976) Interaction of Uridine and Cytidine Monophosphates with Ribonuclease A. IV Phosphorus-31 Nuclear Magnetic Resonance Studies, J. Am. Chem. Soc. 98, 2308.

    PubMed  CAS  Google Scholar 

  • Greengard, L. and Rokhlin, V. (1987) A Fast Algorithm for Particle Simulations, J. Comp. Phys. 73, 325–348.

    Google Scholar 

  • Groeneveld, C. M., Ouwerling, M. C., Erkelens, C. and Canters, G. W. (1988) 1 H Nuclear Magnetic Resonance Study of the Portonation Behaviour of the Histidine Residues and the Electron Selfexchange Reactions of Azurin from Alcaligenes denitrificans, J. Mol. Biol. 200, 189–199.

    Article  PubMed  CAS  Google Scholar 

  • Ha, S. N., Giammona, A., Field, M. and Brady, J. W. (1988) A revised potential-energy surface for molecular mechanics studies of carbohydrates, Carbohydr. Res. 180, 207–221.

    Article  PubMed  CAS  Google Scholar 

  • Hadfield, A. T., Harvey, J. D., Archer, D. B., MacKenzie, D. A., Jeenes, D. J., Radford, S. E., Lowe, G., Dobson, C. M. and Johnson, L. N. (1994) Crystal Structure of the Mutant D52S Hen Egg White Lysozyme with an Oligosaccharide Product, J. Mol. Biol. 243, 856–872.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. and Bricogne, G. (1978) Tomato bushy stunt virus at 2.9 Å Resolution, Nature 276, 368–373.

    Article  CAS  Google Scholar 

  • Hartmann, H., Parak, F., Steigemann, W., Petsko, G. A., Ringe Ponzi, D. and Frauenfelder, H. (1982) Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K, Proc. Natl. Acad. Sci. USA 79, 4967–4971.

    PubMed  CAS  Google Scholar 

  • Haydock, K., Lim, C., Brünger, A. T. and Karplus, M. (1990) Simulation Analysis of Structures on the Reaction Pathway of RNAse A, J. Am. Chem. Soc. 112, 3826–3831.

    Article  CAS  Google Scholar 

  • Hendrickson, J. B. (1961) Molecular Geometry. I. Machine Computation of the Common Rings, 7. Am. Chem. Soc. 83, 4537.

    CAS  Google Scholar 

  • Hilvert, D., Gardell, S. J., Rutter, W. J. and Kaiser, E. T. (1986) Evidence against a Crucial Role for the Phenolic Hydroxyl of Tyr-248 in Peptide and Ester Hydrolyses Catalyzed by Carboxypeptidase A: Comparative Studies of the pH Dependencies of the Native and Phe-248-Mutant Forms, J. Am. Chem. Soc. 108, 5298–5304.

    Article  CAS  Google Scholar 

  • Hoover, W. G. (1985) Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A 31, 1695–1697.

    Article  PubMed  Google Scholar 

  • Ichiye, T., Olafson, B., Swaminathan, S. and Karplus, M. (1986) Structure and Internal Mobility of Proteins: A Molecular Dynamics Study of Hen Egg White Lysozyme, Biopolymers 25, 1909–1939.

    Article  PubMed  CAS  Google Scholar 

  • Ikura, T. and Go, N. (1993) Normal Mode Analysis of Mouse Epidermal Growth Factor: Characterization of the Harmonic Motion, Proteins: Struct. Func. Gen. 16, 423–436.

    CAS  Google Scholar 

  • Imoto, T, Johnson, L. M., North, A. C. T., Phillips, D. C. and Rupley, J. A. (1972) Vertebrate Lysozymes. The Enzymes. New York, Academic. 665–868.

    Google Scholar 

  • Jackson, S. E., Fersht, A. R. (1993) Contribution of Long-Range Electrostatic Interactions to the Stabilization of the Catalytic Transition State of the Serine Protease Subtilisin BPN’, Biochemistry 32, 13909–13916.

    PubMed  CAS  Google Scholar 

  • Janin, J. and Wodak, S. Y. (1983) Structural Domains in Proteins and Their Role in the Dynamics of Protein Function, Prog. Biophys. Mol. Biol. 42, 21–78.

    PubMed  CAS  Google Scholar 

  • Jentoft, J. E., Gerken, T. A., Jentoft, N. and Dearborn, D. G. (1981) [13 C] Methylated Ribonuclease A. 13 C NMR Studies of the Interaction of Lysine 41 with Active Site Ligands, J. Biol. Chem. 256, 231–236.

    PubMed  CAS  Google Scholar 

  • Joao, H. C. and Williams, R. J. P. (1993) The anatomy of a kinase and the control of phosphate transfer, Eur. J. Biochem. 216, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. A. and Benkovic, S. J. (1990). Analysis of Protein Function by Mutagenesis. The Enzymes. 19, San Diego, Academic Press. 159–211.

    Google Scholar 

  • Joseph, D., Petsko, G. A. and Karplus, M. (1990) Anatomy of a Protein Conformational Change: Hinged “Lid” Motion of the Triosephosphate Isomerase Loop, Science 249, 1425–1428.

    PubMed  CAS  Google Scholar 

  • Kannan, K. K., Ramanadham, M. and Jones, T. A. (1984) Structure, refinement, and function of carbonic anhydrase isozymes: Refinement of human carbonic anhydrase I., Ann. N. Y. Acad. Sci. 429, 49–60.

    PubMed  CAS  Google Scholar 

  • Kaptein, R., Zuiderweg, E. R. P., Scheek, R. M., Boelens, R. and van Gunsteren, W. F. (1986) A Protein Structure from Nuclear Magnetic Resonance Data. lac Represser Headpiece, J. Mol. Biol. 182, 179–182.

    Google Scholar 

  • Karplus, M. and Petsko, G. A. (1990) Molecular dynamics simulations in biology, Nature 347, 631–639.

    Article  PubMed  CAS  Google Scholar 

  • Karplus, M. and Post, C. B. (1996). Simulations of lysozyme: Internal motions and the reaction mechanism. Lysozymes: Model Enzymes in Biochemistry and Biology. Basel, Switzerland, Birkhäuser.

    Google Scholar 

  • Kelly, J. A., Sielecki, A. R., Sykes, B. D., James, M. N. G. and Phillips, D. C. (1979) X-ray crystallography of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme, Nature (London) 282, 875–878.

    Article  CAS  Google Scholar 

  • Kirby, A. J. (1987) Mechanism and Stereoelectronic Effects in the Lysozyme Reaction, Crit Rev. Biochemistry 22, 283–315.

    CAS  Google Scholar 

  • Koshland, D. E., Jr. (1953) Stereochemistry and the Mechanism of Enzymatic Reactions, Biol. Rev. 23, 416–436.

    Google Scholar 

  • Kuroki, R., Yamada, H., Moriyama, T. and Imoto, T. (1986) Chemical Mutations of the Catalytic Carboxyl Groups in Lysozyme to the Corresponding Amides, J. Biol. Chem. 261, 13571–13574.

    PubMed  CAS  Google Scholar 

  • Kuwajima, S. and Warshel, A. (1988) The extended Ewald method: a general treatment of long-range electrostatic interactions in microscopic simulations, J. Chem. Phys. 89, 3751–3759.

    Article  CAS  Google Scholar 

  • Lee, F. S. and Warshel, A. (1992) A local-reaction-field method for fast evaluation of long-range electrostatic interactions in molecular simulations, J. Chem. Phys. 97, 3100–3107.

    CAS  Google Scholar 

  • Lee, S., Hwang, B. K., Myoung, Y. C. and Suh, J. (1995) Carboxypeptidase A-Catalyzed Hydrolysis of O-(α-Acylamino-2-styrylacryloyl)-L-β-phenyllactates: Search of Specific Ester Substrates Hydrolyzed through Accumulation of Intermediates, Bioorg. Chem. 23, 183–192.

    Article  CAS  Google Scholar 

  • Levitt, M., Sander, C. and Stern, P. S. (1985) Protein Normal-mode Dynamics: Trypsin Inhibitor, Crambin, Ribonuclease and Lysozyme, J. Mol. Biol. 181, 423–447.

    Article  PubMed  CAS  Google Scholar 

  • Lifson, S. and Warshel, A. (1968) Consistent Force Held for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules, J. Chem. Phys. 49, 5116–5129.

    Article  CAS  Google Scholar 

  • Lim, C. and Tole, P. (1992) Concerted Hydroxl Ion Attack and Pseudorotation in the Base-Catalyzed Hydrolysis of Methyl Ethylene Phosphate, J. Phys. Chem. 96, 5217–5219.

    Article  CAS  Google Scholar 

  • Lim, C. and Tole, P. (1992) Endocyclic and Exocyclic Cleavage of Phosphorane Monoanion: A Detailed Mechanism of the RNase A Transphosphorylation Step, J. Am. Chem. Soc. 114, 7245–7254.

    Article  CAS  Google Scholar 

  • Lippard, S. J. (1995). Methane monooxygenase. NATO ASI Ser., Ser. C (Bioinorganic Chemistry 1–12.

    Google Scholar 

  • Lipscomb, W. N. (1974) Relationship of the Three Dimensional Structure of Carboxypeptidase A to Catalysis. Possible Intermediates and pH Effects, Tetrahedron 30, 1725–1732.

    Article  CAS  Google Scholar 

  • Liras, J. L. and Anslyn, E. V. (1994) Exocyclic and Endocyclic Cleavage of Pyranosides in Both Methanol and Water Detected by a Novel Probe, J. Am. Chem. Soc. 116, 2645–2646.

    Article  CAS  Google Scholar 

  • Lolis, E., Alber, T., Davenport, R. C., Rose, D., Hartman, F. C. and Petsko, G. A. (1990) Structure of Yeast Triosphosphate Isomerase at 1.9-Å Resolution, Biochemisty 29, 6609–6618.

    CAS  Google Scholar 

  • Loncharich, R. J. and Brooks, B. R. (1989) The Effects of Truncating Long-Range Forces on Protein Dynamics, Proteins: Struct. Fund. Genet. 6, 32–45.

    Article  CAS  Google Scholar 

  • Luo, X., Zhang, D. and Weinstein, H. (1994) Ligand-induced domain motion in the activation mechanism of a G-protein-coupled receptor, Protein Engineering 7, 1441–1448.

    PubMed  CAS  Google Scholar 

  • MacKerell, A. D., Karplus, M., et al (1996) to be published

    Google Scholar 

  • MacKerell, A. D., Wiókiewicz-Kuczera, J. and Karplus, M. (1995) An All-Atom Empirical Energy Function for the Simulation of Nucleic Acids, J. Am. Chem. Soc. 117, 11946–11975.

    Article  CAS  Google Scholar 

  • Makinen, M. W., Troyer, J. N., van der Werff, H., Berendsen, J. C. and van Gunsteren, W. F. (1989) Dynamical Structure of Carboxypeptidase A, J. Mol. Biol. 207, 210–216.

    Article  Google Scholar 

  • Mao, B., Pear, M. R., McCammon, J. A. and Quiocho, F. A. (1982) Hinge-bending in L-Arabinose-binding Protein, J. Biol. Chem. 257, 1131–1133.

    PubMed  CAS  Google Scholar 

  • Marques, O. and Sanejouand, Y.-H. (1995) Hinge-Bending Motion in Citrate Synthase Arising From Normal Mode Calculations, Proteins: Struct. Funct. Genet. 23, 557–560.

    CAS  Google Scholar 

  • Matthews, B. W. (1988) Structural Basis of the Action of Thermolysin and Related Zinc Peptidases, Acc. Chem. Res. 21, 333–340.

    Article  CAS  Google Scholar 

  • McCammon, J. A., Gelin, B. R. and Karplus, M. (1977) Dynamics of Folded Proteins, Nature 267, 585–590.

    Article  PubMed  CAS  Google Scholar 

  • McCammon, J. A., Gelin, B. R., Karplus, M. and Wolynes, P. G. (1976) The Hinge-Bending Mode in Lysozyme, Nature 262, 325–326.

    Article  PubMed  CAS  Google Scholar 

  • McCammon, J. A. and Harvey, S. (1987) Dynamics of Proteins and Nucleic Acids, CambridgeUniversity Press, Cambridge.

    Google Scholar 

  • McCammon, J. A. and Karplus, M. (1977) Internal Motions of Antibody Molecules, Nature 268, 765–766.

    Article  PubMed  CAS  Google Scholar 

  • McCammon, J. A. and Northrup, S. H. (1981) Gates binding of ligands to proteins, Nature 293, 316–317.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, R. C., Steitz, T. A. and Engelman, D. M. (1979) Yeast Hexokinase in Solution Enhibits a Large Conformational Change upon Binding Glucose or Glucose 6-Phosphate, Biochemistry 18, 338–342.

    Article  PubMed  CAS  Google Scholar 

  • Meadows, D. H., Roberts, G. C. K. and Jardetsky, O. (1969) Nuclear magnetic resonance studies of the structure and binding sites of enzymes. VIII. Inhibitor binding to ribonuclease., J. Mol. Biol. 45, 491–511.

    Article  PubMed  CAS  Google Scholar 

  • Mooser, G. (1992) Glycosidases and Glycosyltransferases, The Enzymes 20, 187–233.

    CAS  Google Scholar 

  • Morozova, T. Y. and Morozov, V. N. (1982) Viscoelasticity of Protein Crylal as a Probe of the Mechanical Properties of a Protein Molecule, J. Mol. Biol. 157, 173–179.

    Article  PubMed  CAS  Google Scholar 

  • Mulholland, A., J., Grant, G. H. and Richards, W. G. (1993) Computer modelling of enzyme catalysed reaction mechanisms, Protein Engineering 6, 133–147.

    PubMed  CAS  Google Scholar 

  • Mulholland, A., J. and Karplus, M. (1996) in press

    Google Scholar 

  • Newcomer, M. E., Lewis, B. A. and Quiocho, F. A. (1981) The Radius of Gyration of L-Arabinose-binding Protein Decreases upon Binding of Ligand, J. Biol. Chem. 256, 13218–13222.

    PubMed  CAS  Google Scholar 

  • Nose, S. and Klein, M. L. (1983) Constant pressure molecular dynamics for molecular systems, Mol. Phys. 50, 1055–1076.

    CAS  Google Scholar 

  • Oi, V. T., Vuong, T. M., Hardy, R., Reidler, J., Dangl, J., Herzenberg, L. A. and Stryer, L. (1984) Correlation between segmental flexibility and effector function antibodies. Nature (Lond.) 307, 136–140.

    Article  CAS  Google Scholar 

  • Osumi, A., Rahmo, A., King, S. W., Przystas, T. and Fife, T. H. (1994) Substituent Effects in the Carboxypeptidase A catalyzed Hydrolysis of Substituted L,β-Phenyllactate Esters, Biochemistry 33, 14750–14757.

    Article  PubMed  CAS  Google Scholar 

  • Pantoliano, M. W., Whitlow, M., Wood, J. F., Rollence, M. L., Finzel, B. C., Gilliland, G. L., Poulos, T. L. and Bryan, P. N. (1988) The Engineering of Binding Affinity at Metal Ion Binding Sites for the Stabilization of Proteins: Subtilisin as a Test Case, Biochemistry 27, 8311–8317.

    Article  PubMed  CAS  Google Scholar 

  • Pan, S. L., Baldo, J. H., Boekelheidi, K., Weisz, G. and Sykes, B. D. (1978) The nuclear magnetic resonance determination of the conformation of saccharides bound in subsite D of lysozyme, Can. J. Biochem. 56, 624–629.

    Google Scholar 

  • Pérez-Jordá, J. and Yang, W. (1995) A simple O(NlogN) algorithm for the rapid evaluation of particle-particle interactions, Chem. Phys. Lett. 247, 484–490.

    Google Scholar 

  • Pincus, M. R. and Scheraga, H. A. (1979) Conformational energy calculations of enzyme-substrate and enzyme-inhibitor complexes of lysozyme. 2. Calculation of the structures of complexes with a flexible enzyme., Macromolecules 12, 633–644.

    Article  CAS  Google Scholar 

  • Pincus, M. R. and Scheraga, H. A. (1981) Prediction of the Three-Dimensional Structures of Complexes of Lysozyme with Cell Wall Substrates, Biochemistry 20, 3960–3965.

    Article  PubMed  CAS  Google Scholar 

  • Plapp, B. V. (1995) Site-directed mutagenesis: A tool for studying enzyme catalysis, Methods Enzymol. (Enzyme Kinetics and Mechanism, Part D) 249, 91–199.

    CAS  Google Scholar 

  • Pompliano, D. L., Peyman, A. and Knowles, J. R. (1990) Stabilization of a Reaction Intermediate as a Catalytic Device: Definition of the Functional Role of the Flexible Loop in Triosphosphate Isomerase, Biochemistry 29, 3186–3194.

    Article  PubMed  CAS  Google Scholar 

  • Post, C. B., Brooks, B. R., Karplus, M., Dobson, C. M., Artymiuk, P. J., Cheetham, J. C. and Phillips, D. C. (1986) Molecular Dynamics Simulations of Native and Substrate-bound Lysozyme, J. Mol. Biol. 190, 455–479.

    Article  PubMed  CAS  Google Scholar 

  • Post, C. B., Dobson, C. M. and Karplus, M. (1990). Lysozyme hydrolysis of β-glycosides: a consensus between binding interactions and mechanisms. ACS Symposium Series, chapter 23.

    Google Scholar 

  • Post, C. B. and Karplus, M. (1986) Does Lysozyme Follow the Lysozyme Pathway? An Alternative Based on Dynamic, Structural, and Stereoelectronic Considerations, J. Am. Chem. Soc. 108, 1317–1319.

    Article  CAS  Google Scholar 

  • Rees, D. C., Lewis, M. and Lipscomb, W. N. (1983) Refined Crystal Structure of Carboxypeptidase A at 1.54 Å Resolution, J. Mol. Biol. 168, 367–387.

    PubMed  CAS  Google Scholar 

  • Remington, S., Wiegand, G. and Huber, R. (1982) Crystollographic Refinement and Atomic Models of two Different Forms of a Citrate Synthase at 2.7 and 1.7 Å Resolution, J. Mol. Biol. 158, 111–152.

    Article  PubMed  CAS  Google Scholar 

  • Richards, F. M. and Wyckoff, H. W. (1971) The Enzymes 4, (P.D. Boyer, Ed.) pp. 647–806, Academic, New York.

    Google Scholar 

  • Richardson, J. S. (1981) The Anatomoy and Taxonomy of Protein Structure, Adv. Protein Chem. 34, 167–339.

    PubMed  CAS  Google Scholar 

  • Roberts, G. C. K., Dennis, E. A., Meadows, D. H., Cohen, J. S. and Jardetzky, O. (1969) Mechanism of action of ribonuclease, Proc. Natl. Acad. Sci. USA 62, 1151–1158.

    PubMed  CAS  Google Scholar 

  • Russell, A., Thomas, P. G. and Fersht, A. R. (1987) Electrostatic Effects on the Modification of Charged Groups in the Active Site Cleft of Subtilisin by Protein Engineering, J. Mol. Biol. 193, 803–813.

    Article  PubMed  CAS  Google Scholar 

  • Russell, A. J. and Fersht, A. R. (1987) Rational modification of enzyme catalysis by engineering surface charge, Nature 328, 496–500.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, M., Assaf, Y., Sharon, N. and Chipman, D. M. (1977) Mechanism of Lysozyme Catalysis: Role of Ground-State Strain in Subsite D in Hen Egg-White and Human Lysozymes, Biochemistry 16, 423–431.

    Article  PubMed  CAS  Google Scholar 

  • Schlenkrich, M., Brickmann, J., MacKerell, A. D. J. and Karplus, M., Ed. (1996). An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications. Membrane Structure and Dynamics. Birkhauser.

    Google Scholar 

  • Schreiber, H. and Steinhauser, O. (1992) Molecular dynamics studies of solvated polypeptides: why the cut-off scheme does not work, Chem. Phys. 168, 75–89.

    Article  CAS  Google Scholar 

  • Shafizadeh, F. (1958) Formation and cleavage of the oxygen ring in sugars, Adv. Carbohydr. Chem. 13, 9–61.

    PubMed  CAS  Google Scholar 

  • Shimada, J., Kaneko, H. and Takada, T. (1994) Performance of fast multipole methods for calculating electrostatic, J. Comp. Chem 15, 28–43.

    CAS  Google Scholar 

  • Sinnot, M. L. (1980). Glycosyl Group Transfer.Enzyme Mechanisms London, Royal Society of Chemistry. 259–291.

    Google Scholar 

  • Sternberg, M. J. E., Hayes, F. R. F., Russell, A. J., Thomas, P. G. and Fersht, A. R. (1987) Prediction of electrostatic effects of engineering of protein charges, Nature 330, 86–88.

    Article  PubMed  CAS  Google Scholar 

  • Stote, R. H. and Karplus, M. (1995) Zinc Binding in Proteins and Solution: A Simple but Accurate Nonbonded Representation, Proteins: Struct. Func. Gen. 23, 12–31.

    CAS  Google Scholar 

  • Stote, R. H., States, D. J. and Karplus, M. (1991) On the treatment of electrostatic interactions in biomolecular simulation, J. Chim. Phys. 88, 2419–2433.

    CAS  Google Scholar 

  • Straub, J. E., Lim, C. and Karplus, M. (1994) Simulation Analysis of the Binding Interactions in the RNase A/3′-UMP Enzyme-Product Complex as a function of pH, J. Am. Chem. Soc. 116, 2591–2599.

    CAS  Google Scholar 

  • Strynadka, N. C. J. and James, M. N. G. (1991) Lysozyme Revisited: Crystallographic Evidence for Distortion of an N-Acetylmuramic Acid Residue Bound in Site D, J. Mol. Biol. 220, 401–424.

    Article  PubMed  CAS  Google Scholar 

  • Suh, J. (1992) Model studies of Metalloenzymes Involving Metal Ions as Lewis Acid Catalysts, Acc. Chem. Res. 25, 273–279.

    Article  CAS  Google Scholar 

  • Thomas, P. G., Russel, A. J. and Fersht, A. R. (1985) Tailoring the pH dependence of enzyme catalysis using protein engineering, Nature 318, 375–376.

    Article  CAS  Google Scholar 

  • Thompson, J. E. and Raines, R. T. (1994) Value of General Acid-Base Catalysis to Ribonuclease A, J. Am. Chem. Soc. 116, 5467–5468.

    CAS  Google Scholar 

  • Thompson, J. E., Venegas, F. D. and Raines, R. T. (1994) Energetics of Catalysis by Ribonucleases: Fate of the 2′,3′-Cyclic Phosphodiester Intermediate, Biochemistry 33, 7408–7414.

    PubMed  CAS  Google Scholar 

  • Umeyama, H., Nakayawa, S. and Fujii, T. (1979) Simulation of the charge relay structure in ribonuclease A, Chem. Pharm. Bull. 27, 974–980.

    PubMed  CAS  Google Scholar 

  • Usher, D. A., Erenrich, E. S. and Eckstein, F. (1972) Geometry of the First Step in the Action of Ribonuclease A, Proc. Natl. Acad. Sci. USA 69, 115–118.

    PubMed  CAS  Google Scholar 

  • Vernon, C. A. (1967) The mechanisms of hydrolysis of glycosides and their relevance to enzymecatalyzed reactions, Proc. Roy. Soc., Ser. B 167, 389–401.

    CAS  Google Scholar 

  • Walsh, C. (1979) Enzymatic Reaction Mechanisms. W. H. Freeman, San Francisco.

    Google Scholar 

  • Walter, B. and Wold, F. (1976) The Role of Lysine in the Action of Bovine Pancreatic Ribonuclease A, Biochemistry 15, 304–310.

    PubMed  CAS  Google Scholar 

  • Warshel, A. (1978) Energetics of enzyme catalysis, Proc. Natl. Acad. Sci. USA 75, 5250–5254.

    PubMed  CAS  Google Scholar 

  • Warshel, A. (1981) Calculations of Enzymatic Reactions: Calculations of pKa, Proton Transfer Reactions, and General Acid Catalysis Reactions in Enzymes, Biochemistry 20, 3167–3177.

    Article  PubMed  CAS  Google Scholar 

  • Warshel, A. (1991) Computer Simulation of Chemical Reactions in Enzymes and Solutions. John Wiley & Sons, New York.

    Google Scholar 

  • Warshel, A. and Karplus, M. (1972) Calculation of Ground and Excited State Potential Surfaces of Conjugated Molecules. I. Formulation and Parametrization, J. Am. Chem. Soc. 94, 5612–5625.

    Article  CAS  Google Scholar 

  • Warshel, A. and Karplus, M. (1974) Calculation of ππ * Excited State Conformations and Vibronic Structure of Retinal and Related, J. Am. Chem. Soc. 96, 5677–5689.

    Article  PubMed  CAS  Google Scholar 

  • Warshel, A. and Levitt, M. (1976) Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme, J. Mol. Biol. 103, 227–249.

    Article  PubMed  CAS  Google Scholar 

  • Warshel, A. and Russell, S. T. (1984) Calculations of electrostatic interactions in biological systems and in solutions, Q. Rev. Biophys. 17, 283–422.

    PubMed  CAS  Google Scholar 

  • Warshel, A. and Weiss, R, M. (1980) An Empirical Valence Bond Approach for Computing Reactions in Solutions and in Enzymes, J. Am. Chem. Soc. 102, 6218–6226.

    Article  CAS  Google Scholar 

  • Westheimer, F. H. (1956) in Steric Effects in Organic Chemistry. New York, N. Y., John Wiley and Sons, Inc. 523–555.

    Google Scholar 

  • White, J. L., Hackert, M. L., Buehner, M., Adams, M. J., Ford, G. C., Lentz, P. J., Jr., Smiley, I. E., Steindel, S. J. and Rossman, M. G. (1976) A Comparison of the Structures of Apo Dogfish M4 lactate Dehydrogenase and its Ternary Complexes, J. Mol. Biol. 102, 759–779.

    Article  PubMed  CAS  Google Scholar 

  • Whitlow, M. and Teeter, M. M. (1986) An Empirical Examination of Potential Energy Minimization Using the Well-Determined Structure of the Protein Crambin, J. Am. Chem. Soc. 108, 7163–7172.

    Article  CAS  Google Scholar 

  • Wiberg, K. B. (1965) A Scheme for Strain Energy Minimization. Application to the Cyclo-alkanes, J. Am. Chem. Soc. 87, 1070–1078.

    CAS  Google Scholar 

  • Wigley, D. B. (1995) Structure and mechanism of DNA topoisomerases, Annu. Rev. Biophys. Biomol. Struct. 24, 185–208.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J. C. and McDermott, A. E. (1995) Dynamics of the Flexible Loop of Triosephosphate Isomerase: The Loop Motion is Not Ligand Gated, Biochemistry 34, 8309–8319.

    PubMed  CAS  Google Scholar 

  • Wlodawer, A. (1984) Structure of bovine pancreatic ribonuclease by x-ray and neutron diffraction, Biol. Macromol. Assem. 2, 393–439.

    CAS  Google Scholar 

  • Wlodawer, A., Borkakoti, N., Moss, D. S. and Howlin, B. (1986) Comparison of Two Independently Refined Models of Ribonuclease-A, Acta. Cryst. B 42, 379–387.

    Article  Google Scholar 

  • Wodak, S. Y., Liu, M. Y. and Wyckoff, H. W. (1977) The Structure of Cytidilyl(2′,5′)Adenosine When Bound to Pancreatic Ribonuclease S, J. Mol. Biol. 116, 855–875.

    Article  PubMed  CAS  Google Scholar 

  • York, D. M., Darden, T. A. and Pedersen, L. G. (1993) The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods, J. Chem. Phys. 99, 8345–8348.

    Article  CAS  Google Scholar 

  • Zhang, K., Chance, B., Auld, D. S., Larsen, K. S. and Vallee, B. L. (1992) X-ray Absorption Fine Structure Study of the Active Site of Zinc and Cobalt Carboxypeptidase A in Their Solution and Crystalline Forms, Biochemistry 31, 1159–1168.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Stote, R.H., Dejaegere, A., Karplus, M. (2002). Molecular Mechanics and Dynamics Simulations of Enzymes. In: Náray-Szabó, G., Warshel, A. (eds) Computational Approaches to Biochemical Reactivity. Understanding Chemical Reactivity, vol 19. Springer, Dordrecht. https://doi.org/10.1007/0-306-46934-0_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46934-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4512-1

  • Online ISBN: 978-0-306-46934-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics