Skip to main content

Free Energy Perturbation Calculations within Quantum Mechanical Methodologies

  • Chapter
Computational Approaches to Biochemical Reactivity

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 19))

  • 249 Accesses

Abstract

Newly developed techniques for use in quantum free energy perturbation calculations are presented. These techniques represent the first means of performing arbitrary perturbations in quantum mechanical systems. The methods that have been developed include single and dual-toplogy approaches as well as strategies that imploy molecular mechanical intermediates. The theoretical and practical considerations for carrying out the associated molecular dynamics simulations are also discussed. Simulations are presented for systems that are purely quantum mechanical, and for systems that involve a combination of quantum mechanical and molecular mechanical atoms. Preliminary results demonstrate these procedures to constitute a powerful tool in free energy calculations, with the potential to significantly increase the accuracy of simulations on both large-scale and small-scale systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Åqvist, J. (1990). “Ion-Water Interaction Potentials Derived from Free Energy Perturbation Simulations.” J. Phys. Chem. 94:8021.

    Google Scholar 

  • Åqvist, J., M. Carmen and J. Samuelsson (1994). “A New Mthod for Predicting Binding Affinity in Computer-aided Drug Design.” Prot. Eng. 7: 385–391.

    Google Scholar 

  • Aue, D. H., H. M. Webb and M. T. Bowers (1976). “A Thermodynamic Analysis of Solvation Effects on the Basiciites of Alkyamines. An Electrostatic Analysis of Subsituent Effects.” J. Am. Chem. Soc. 98: 318–329.

    CAS  Google Scholar 

  • Bash, P., M. Fields and M. Karplus (1987). “Free Energy Perturbation Method for Chemical Reactions in the Condensed Phase: A Dynamical Approach Based on the Combined Quantum and Molecular Mechanical Potential.” J. Am. Chem. Soc. 109(26): 8092–8094.

    Article  CAS  Google Scholar 

  • Ben-Naim, A. and Y. Marcus (1984). “Solvation Thermodynamics of Nonionic Solutes.” J. Chem. Phys. 81: 2016–2027.

    Article  CAS  Google Scholar 

  • Berendsen, H. J. C., J. P. M. Potsma, W. F. van Gunsteren, A. D. DiNola and J. R. Haak (1984). “Molecular Dynamics with Coupling to an External Bath.” J. Chem. Phys. 81: 3684–3690.

    Article  CAS  Google Scholar 

  • Besler, B. H., K. M. J. Merz and P. A. Kollman (1990). “Atomic Charges Derived from Semiempirical Methods.” J. Comput. Chem. 11(4): 431–439.

    Article  CAS  Google Scholar 

  • Born, M. (1920). Z. Phys. 1: 45.

    CAS  Google Scholar 

  • Boudon, S. and G. Wipff (1991). “Free Energy Calculations Involving NH 4 + in water.” J. Comput. Chem. 12:42.

    Article  CAS  Google Scholar 

  • Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus (1983). “CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations.” J. Comput. Chem. 4(2): 187–217.

    Article  CAS  Google Scholar 

  • Car, R. and M. Parrinello (1985). “Unified Approach for Molecular Dynamics and Density-Functional Theory.” Physs. Rev. Lett. 55: 2471.

    CAS  Google Scholar 

  • Cieplak, P. and P. Kollman (1990). “Monte Carlo Simulation of Aqueous Solutions of Li+ and Na+ Using Many-Body Potentials. Coordination Numbers, Ion Solvation Enthalpies, and the Relative Free Energy of Solvation.” J. Chem. Phys. 92(11): 6761.

    CAS  Google Scholar 

  • Dang, L. X. and P. A. Kollman (1990). “Free Energy of Association of the 18-Crown-6:K+ Complex in Water: A Molecular Dynamics Simulation.” J. Am. Chem. Soc. 112(15): 5716–5720.

    Article  CAS  Google Scholar 

  • Dewar, M. J. S., J. A. Hashmall and C. G. Venier (1968). “Ground States of Molecules. IX. Hydrocarbon Radicals and Radical Ions.” J. Am. Chem. Soc. 90: 1953–1957.

    CAS  Google Scholar 

  • Dewar, M. J. S. and W. Thiel (1977). “Ground States of Molecules. 38. The MNDO Method, Approximations and Parameters.” J. Am. Chem. Soc. 99(15): 4899–4907.

    CAS  Google Scholar 

  • Dewar, M. J. S. and W. Thiel (1977). “Ground States of Molecules. 39. MNDO Results for Molecules Containing Hydrogen, Carbon, Nitrogen, and Oxygen.” J. Am. Chem. Soc. 99(15): 4907–4917.

    CAS  Google Scholar 

  • Dewar, M. J. S., E. G. Zoebisch, E. F. Healy and J. J. P. Stewart (1985). “AM1: A New General Purpose Quantum Mechanical Molecular Model.” J. Am. Chem. Soc. 107(13): 3902–3909.

    CAS  Google Scholar 

  • Elber, R. (1990). “Calculation of the Potential of Mean Force Using Molecular Dynamics with Linear Constraints: An Application to a Conformational Transition in a Solvated Peptide.” J. Chem. Phys. 93(6): 4312–4321.

    Article  CAS  Google Scholar 

  • Field, M. J. (1991). “Constrained Optimization of Ab Initio and Semiemperical Hartree-Fock Wave Functions Using Direct Minimization or Simulated Annealing.” J. Phys. Chem. 95: 5104–5108.

    Article  CAS  Google Scholar 

  • Field, M. J., P. A. Bash and M. Karplus (1990). “A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations.” J. Comput. Chem. 11: 700–733.

    Article  CAS  Google Scholar 

  • Ford, G. P. and J. D. Scribner (1983). “A Simple Method for Predicting Hydration Energies of Organic Cations Derived from Protonation or Alkylation of Neutral Oxygen and Nitrogen Bases.” J. Org. Chem. 48: 2226–2233.

    Article  CAS  Google Scholar 

  • Friedman, H. L. and C. V. Krishnan (1973). Thermodynamics of Ion Hydration. Water a Comprehensive Treatise. New York, Plenum Press. 1–118.

    Google Scholar 

  • Gao, J. (1992). “Comparison of the Hybrid AM1/TIP3P and the OPLS Functions Through Monte Carlo Simulations of Acetic Acid in Water.” J. Phys. Chem. 96: 6432–6439.

    CAS  Google Scholar 

  • Grootenhuis, P. D. J. and P. A. Kollman (1989). “Crown Ether-Neutral Molecule Interactions Studied by Molecular Mechanics, Normal Mode Analysis, and Free Energy Perturbation Calculations. Near Quantitative Agreement between Theory and Experimental Binding Free Energies.” J. Am. Chem. Soc, 111: 4046–4051.

    CAS  Google Scholar 

  • Hartke, B. and E. A. Carter (1992). “Ab Initio Molecular Dynamics with Correlated Molecular Wave Functions: Generalized Valence Bond Molecular Dynamics and Simulated Annealilng.” J. Chem. Phys., 97(9): 6569–6578.

    Article  CAS  Google Scholar 

  • Hartsough, D. and K. M. J. Merz (1995). “Potential of Mean Force Calculation on the SN1 Fragmentation of tert-Butyl Chloride.” J. Phys. Chem. 99: 384–390.

    CAS  Google Scholar 

  • Hehre, W. J., L. Radom, P. R. van Schleyer and J. A. Pople (1986). Ab Initio Molecular Orbital Theory. New York, John Wiley.

    Google Scholar 

  • Jorgensen, W. L. (1989). “Free Energy Calculations: A Breakthrough for Modeling Organic Chemistry in Solution.” Acc. Chem. Res. 22: 184–189.

    Article  CAS  Google Scholar 

  • Jorgensen, W. L., J. Chandrasekhar, J. Madura, R. W. Impey and M. L. Klein (1983). “Comparison of Simple Potential Functions for the Simulation of Liquid Water.” J. Chem. Phys. 79: 926.

    Article  CAS  Google Scholar 

  • Kollman, P. A. (1993). “Free Energy Calculations: Applications to Chemical and Biochemical Phenomena.” Chem. Rev. 93(7): 2395–2417.

    Article  CAS  Google Scholar 

  • Kollman, P. A. and K. M. J. Merz (1990). “Computer Modeling of the Interactions of Complex Molecules.” Acc. Chem. Res. 23: 246–252.

    Article  CAS  Google Scholar 

  • Lybrand, T. P., I. Ghosh and J. A. McCammon (1985). “Hydration of Chloride and Bromide Anions: Determination of Relative Free Energy by Computer Simulation.” J. Am. Chem. Soc. 107: 7793–7794.

    Article  CAS  Google Scholar 

  • Marcus, Y. (1985). Ion Solvation, New York, John Wiley.

    Google Scholar 

  • Marrone, T. J. and K. M. Merz Jr. (1992). “Molecular Recogntion of Potassium Ion by the Naturally Occurring Ionophore Nonactin.” J. Am. Chem. Soc. 114: 7542.

    Article  CAS  Google Scholar 

  • Merz, K. M., Jr. and B. H. Besler (1990). “MOPAC 5.0 ESP.” OCPE Bull, 10: 15.

    Google Scholar 

  • Merz, K. M., Jr. and P. A. Kollman (1989). “Free Energy Perturbation Simulation of the Inhibition of Thermolysin: Prediction of the Free Energy of Binding of a New Inhibitor.” J. Am. Chem. Soc. 111(15): 5649–5658.

    CAS  Google Scholar 

  • Mezei, M. and D. L. Beveridge (1986). “Free Energy Simulations.” Ann. NY. Acad. Sci. 482: 1–23.

    PubMed  CAS  Google Scholar 

  • Mitchell, M. J. and J. A. McCammon (1991). “Free Energy Difference Calculations by Thermodynamic Integration: Difficulties in Obtaining a Precise Value.” J. Comput. Chem. 12(2): 271–275.

    Article  CAS  Google Scholar 

  • Pearlman, D. A. (1994). “Comparison of Alternative Approaches to Free Energy Calculations.” J. Phys. Chem. 98(5): 1487–1493.

    Article  CAS  Google Scholar 

  • Pearlman, D. A., D. A. Case, J. C. Caldwell, G. L. Seibel, U. C. Singh, P. Weiner and P. A. Kollman (1991). AMBER 4.0. University of California, San Francisco.

    Google Scholar 

  • Pearson, R. G. (1986). “Ionization Potentials and Electron Affinities in Aqueous Solution.” J. Am. Chem. Soc. 108:6109–6114.

    CAS  Google Scholar 

  • Singh, U. C. and P. A. Kollman (1986). “A Combined Ab initio Quantum Mechanical and Molecular Mechanical Method for Carrying out Simulations on Complex Molecular Systems: Applications to the CH3Cl+Cl Exchange Reaction and Gas Phase Protonation of Polyethers.” J. Comput. Chem. 7(6): 718–730.

    Article  CAS  Google Scholar 

  • Stanton, R. V., S. L. Dixon and K. M. Merz Jr. (1995). “A General Formulation for a Quantum Free Energy Perturbation Study.” J. Phys. Chem. 99(27): 10701–10704.

    Article  CAS  Google Scholar 

  • Stanton, R. V., D. S. Hartsough and J. K. M. Merz (1995). “An Examination of a Density Functional/Molecular Mechanical Coupled Potential.” J. Comput. Chem. 16(1): 113–128.

    Article  CAS  Google Scholar 

  • Stanton, R. V., D. S. Hartsough and K. M. Merz (1993). “Calculation of Solvation Free Energies Using a Density Functional / Molecular Dynamics Coupled Potential.” J. Phys. Chem. 97(46): 11868–11870.

    Article  CAS  Google Scholar 

  • Stanton, R. V., L. R. Little and K. M. Merz (1995). “Quantum Free Energy Perturbation Study within a PM3/MM Coupled Potential.” J. Phys. Chem. 99(2): 483–486.

    Article  CAS  Google Scholar 

  • Stewart, J. J. P. (1989). “Optimization of Parameters for Semiempirical Methods I. Method.” J. Comput. Chem. 10(2): 209–220.

    CAS  Google Scholar 

  • Stewart, J. J. P. (1989). “Optimization of Parameters for Semiempirical Methods II. Applications.” J. Comput. Chem. 10(2): 221–264.

    CAS  Google Scholar 

  • Stewart, J. J. P. (1991). “Optimization of Parameters for Semiempirical Methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb and Bi.” J. Comput. Chem. 12(3): 320–341.

    Article  CAS  Google Scholar 

  • Straatsma, T. P. and H. J. C. Berendsen (1988). “Free Energy of Ionic Hydration: Analysis of a Thermodynamic Technique to Evaluate Free Energy Differences by Molecular Dynamics Simulations.” J. Chem. Phys. 89(9): 5876.

    Article  CAS  Google Scholar 

  • van Eerden, J., W. J. Briels, S. Harkema and D. Feil (1989). “Potential of Mean Force by Thermodynamic Integration: Molecular-Dynamics Simulation of Decomplexation.” Chem. Phys. Lett. 164(4): 370–376.

    Google Scholar 

  • van Gunsteren, W. F. and H. J. C. Berendsen (1977). “Algorithm for Macromolecular Dynamics and Constraint Dynamics.” Mol. Phys. 34: 1311.

    Google Scholar 

  • Wesolowski, T. and A. Warshel (1994). “Ab Initio Free Energy Perturbation Calculations of Solvation free Energy Using the Frozen Density Functional Approach.” J. Phys. Chem 98: 5183–5187.

    Article  CAS  Google Scholar 

  • Wesolowski, T. A. and A. Warshel (1993). “Frozen Density Functional Approach for Ab Initio Calculations of Solvated Molecules.” J. Phys. Chem. 97: 8050–8053.

    Article  CAS  Google Scholar 

  • Zhao, X. G., C. S. Cramer, B. Weiner and M. Frenklach (1993). “Dynamics with the AMI Potential: Reactions on Diamond Surfaces.” J. Phys. Chem. 97: 1639–1648.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Stanton, R.V., Dixon, S.L., Merz, K.M. (2002). Free Energy Perturbation Calculations within Quantum Mechanical Methodologies. In: Náray-Szabó, G., Warshel, A. (eds) Computational Approaches to Biochemical Reactivity. Understanding Chemical Reactivity, vol 19. Springer, Dordrecht. https://doi.org/10.1007/0-306-46934-0_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-46934-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4512-1

  • Online ISBN: 978-0-306-46934-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics