Finite-Time Thermodynamics and Simulated Annealing

  • Bjarne Anderson
Part of the Understanding Chemical Reactivity book series (UCRE, volume 18)


Finite-time thermodynamics is the extension of traditional reversible thermodynamics to include the extra requirement that the process in question goes to completion in a specified finite length of time. As such it is by definition a branch of irreversible thermodynamics, but unlike most other versions of irreversible thermodynamics, finite-time thermodynamics does not require or assume any knowledge about the microscopics of the processes, since the irreversibilities are described by macroscopic constants such as friction coefficients, heat conductances, reaction rates and the like. Some concepts of reversible thermodynamics, such as potentials and availability, generalize nicely to finite time, others are completely new, e.g. endoreversibility and thermodynamic length. The basic ideas of finite-time thermodynamics are reviewed and several of its procedures presented, emphasizing the importance of power.

The global optimization algorithm simulated annealing was designed for extremely large and complicated systems and therefore inspired by analogy to statistical mechanics. Its basic version is outlined, and several notions from finite-time thermodynamics are introduced to improve its performance. Among these are an optimal temperature path, the use of ensembles, and an analytic two-state model with Arrhenius kinetics.


Entropy Production Transition Probability Matrix Annealing Schedule Carnot Efficiency Carnot Engine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keenan, J.H. (1941) Thermodynamics, MIT Press, Cambridge.Google Scholar
  2. 2.
    Gaggioli, R.A. (ed.) (1980) Thermodynamics: Second Law Analysis, ACS Symposium Series 122, American Chemical Society, Washington.Google Scholar
  3. 3.
    Tolman, R.C. and Fine, P.C. (1948) Rev. Mod. Phys. 20, 51–77.ADSCrossRefGoogle Scholar
  4. 4.
    Curzon, F.L. and Ahlborn, B. (1975)Am J. Phys. 43, 22–24.ADSCrossRefGoogle Scholar
  5. 5.
    Salamon, P., Andresen, B. and Berry, R.S. (1977) Phys. Rev. A 15, 2094–2102.ADSGoogle Scholar
  6. 6.
    Hermann, R. (1973) Geometry, Physics, and Systems, Marcel Dekker, New York.zbMATHGoogle Scholar
  7. 7.
    Callen, H.B. (1985) Thermodynamics, Wiley, New York.zbMATHGoogle Scholar
  8. 8.
    Tisza, L. (1966) Generalized Thermodynamics, MIT Press, Cambridge.Google Scholar
  9. 9.
    Weinhold, F. (1975) J. Chem. Phys. 63, 2479–2482.ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Weinhold, F. (1975) J. Chem Phys. 63, 2484–2487.ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Weinhold, F. (1975) J. Chem. Phys. 63, 2488–2495.ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Weinhold, F. (1975) J. Chem. Phys. 63, 2496–2501.ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Weinhold, F. (1978) in D. Henderson and H. Eyring (eds.) Theoretical Chemistry, Advances and Perspectives, Vol. 3, Academic Press, New York pp. 15–54.Google Scholar
  14. 14.
    Salamon, P., Andresen, B., Gait, P.D. and Berry, R.S. (1980) J. Chem. Phys. 73 1001–1002; erratum ibid. 73, 5407E.ADSCrossRefGoogle Scholar
  15. 15.
    Salamon, P. and Berry, R.S. (1983) Phys. Rev. Lett. 51, 1127–1130.ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Nulton, J. and Salamon, P. (1988) Phys. Rev. A 37, 1351–1356.ADSMathSciNetGoogle Scholar
  17. 17.
    Salamon, P., Nulton, J., Robinson, J., Pedersen, J.M., Ruppeiner, G. and Liao, L. (1988) Comp. Phys. Comm. 49, 423–428.ADSCrossRefGoogle Scholar
  18. 18.
    Salamon, P., Nulton, J. and Ihrig, E. (1984) J. Chem Phys. 80, 436–437.ADSCrossRefGoogle Scholar
  19. 19.
    Feldmann, T., Andresen, B., Qi, A. and Salamon, P. (1985) J. Chem Phys. 83, 5849–5853.ADSCrossRefGoogle Scholar
  20. 20.
    Flick, J.D., Salamon, P. and Andresen, B. (1987) info Sci. 42, 239–253.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Salamon, P., Komlos, J., Andresen, B. and Nulton J. (1987) Math. Soc. Sci. 13, 153–163.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Andresen, B. and Gordon, J. M. (1994) Phys. Rev. E 50, 4346–4351.ADSCrossRefGoogle Scholar
  23. 23.
    Boltyanskii, V.G. (1971) Mathematical Methods of Optimal Control, Holt, Reinhart, and Winston, New York.zbMATHGoogle Scholar
  24. 24.
    Tolle, H. (1975) Optimization Methods, Springer, New York.zbMATHGoogle Scholar
  25. 25.
    Leondes, C.T. (ed.) (1964 and onward). Advances in Control System, Academic Press, New York.Google Scholar
  26. 26.
    Salamon, P., Nitzan, A., Andresen, B. and Berry, R.S. (1980) Phys. Rev. A 21, 2115–2129.ADSMathSciNetGoogle Scholar
  27. 27.
    Onsager, L. (1931) Phys. Rev. 37, 405–426.ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Onsager, L. (1931) Phys. Rev. 38, 2265–2279.ADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Prigogine, I. (1962) Non-equilibrium Statistical Mechanics, Wiley, New York.zbMATHGoogle Scholar
  30. 30.
    Prigogine, I. (1967). Introduction to Thermodynamics of Irreversible Processes, Wiley, New York, pp.76 ff.Google Scholar
  31. 31.
    Salamon, P. and Nitzan, A. (1981) J. Chem. Phys. 74, 3546–3560.ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Kirkpatrick, S., Gelatt, C.D. Jr. and Vecchi, M.P. (1983) Science 220, 671–680.ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Jakobsen, M.O., Mosegaard, K. and Pedersen, J.M. (1987) in A. Vogel (ed.) Model Optimization in Exploration Geophysics 2. Proceedings of the 5th International Mathematical Geophysics Seminar, Vieweg & Sohn, Braunschweig.Google Scholar
  34. 34.
    Hansen, L.K. (1990) At Symposium on Applied Statistics, (UNI-C, Copenhagen).Google Scholar
  35. 35.
    Hansen, L.K. and Salamon, P. (1990) IEEE Tram. on Pattern Analysis and Machine Intelligence 12, 993–1001.CrossRefGoogle Scholar
  36. 36.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953) J. Chem. Phys. 21, 1087–1092.CrossRefADSGoogle Scholar
  37. 37.
    Ruppeiner, G. (1988) Nucl. Phys. B (Proc. Suppl.) 5A, 116–121.ADSCrossRefGoogle Scholar
  38. 38.
    Andresen, B. (1983). Finite-time Thermodynamics, Physics Laboratory 11, University of Copenhagen.Google Scholar
  39. 39.
    Andresen, B., Hoffmann, K.H., Mosegaard, K., Nulton, J., Pedersen, J.M. and Salamon, P. (1988) J. Phys. (France) 49, 1485–1492.Google Scholar
  40. 40.
    Ruppeiner, G., Pedersen, J.M. and Salamon, P. (1991) J. Phys. I 1, 455–470.CrossRefGoogle Scholar
  41. 41.
    Pedersen, J.M., Mosegaard, K., Jacobsen, M.O. and Salamon, P. (1989) Physics Laboratory, University of Copenhagen, Report no. 89-14.Google Scholar
  42. 42.
    Andresen, B. and Gordon, J.M. (1993) Open Syst. and Info. Dyn. 2, 1–12.zbMATHCrossRefGoogle Scholar
  43. 43.
    Kubo, R. (1967) Statbtical Mechanics, North-Holland, Amsterdam.Google Scholar
  44. 44.
    Fu, Y. and Anderson, P.W. (1986) J. Phys. A 19, 1605–1620.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Grest, G.S., Soukoulis, C.M. and Levin, K. (1986) Phys. Rev. Lett. 56, 1148–1151.ADSCrossRefGoogle Scholar
  46. 46.
    Hoffmann, K.H., Watowitch, S. and Berry, R.S. (1985) J. Appl. Phys 58, 2125–2134.ADSCrossRefGoogle Scholar
  47. 47.
    Mozurkewich, M. and Berry, R.S. (1981) Proc. Natl. Acad. Sci. USA 78, 1986.Google Scholar
  48. 48.
    Mozurkewich, M. and Berry, R.S. (1982) J. Appl. Phys 53, 34–42.ADSCrossRefGoogle Scholar
  49. 49.
    Gordon, J.M. and Zarmi, Y. (1989) Am J. Phys. 57, 995–998.ADSCrossRefGoogle Scholar
  50. 50.
    Andresen, B., Gordon, J.M. (1992) J. Appl. Phys. 71, 76–79.ADSCrossRefGoogle Scholar
  51. 51.
    Andresen, B. and Gordon, J.M. (1992) Int. J. Heat and Fluid Flow 13, 294–299.CrossRefGoogle Scholar
  52. 52.
    Gordon, J.M. and Ng, K.C. (1994) J. Appl. Phys. 57, 2769–2774.ADSCrossRefGoogle Scholar
  53. 53.
    Boseniuk, T. and Ebeling, W. (1988) Europhys. Lett. 6, 107.ADSCrossRefGoogle Scholar
  54. 54.
    Boseniuk, T. and Ebeling, W. (1988) Syst. Anal. Model. Simul. 5, 413.MathSciNetzbMATHGoogle Scholar
  55. 55.
    Ebeling, W. (1990) Syst. Anal. Model. Simul. 7, 3.zbMATHMathSciNetGoogle Scholar
  56. 56.
    Fontana, W., Schnabl, W. and Schuster, P. (1989) Phys. Rev. A 40, 3301–3321.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Bjarne Anderson
    • 1
  1. 1.Ørsted Laboratory, Niels Bohr InstituteUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations