Advertisement

Higher-Order Transport

  • L. C. Woods
Part of the Understanding Chemical Reactivity book series (UCRE, volume 18)

Keywords

Heat Flux Kinetic Theory Knudsen Number Velocity Distribution Function Irreversible Thermodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Woods, L.C. (1993). Kinetic theory of gases and magnetoplasmas. Oxford University Press.Google Scholar
  2. [2]
    Woods, L.C. (1986). The thermodynamics of fluid systems. Oxford University Press.Google Scholar
  3. [3]
    Jou, D., Casas-Vázquez, J. and Lebon, G. (1993). Extended irreversible thermodynamics Springer-Verlag.Google Scholar
  4. [4]
    Maxwell, J.C. (1867). Phil. Trans. Roy. Soc. 157, 49–88; (See also Scientific papers of James Clerk Maxwell, W.D. Niven, ed. New York: Dover, (1965), vol. 2, 43.)CrossRefGoogle Scholar
  5. [5]
    Cattaneo, C. (1948). Atti Sem. Mat. Fis. Univ. Modena. 3, 83.MathSciNetGoogle Scholar
  6. [6]
    Woods, L.C. (1994). J. Non-equilib. Thermodynam. 19, 61–75.zbMATHCrossRefADSGoogle Scholar
  7. [7]
    Woods, L.C. (1982). IMA Journ. Appl. Maths. 29, 221–46.ADSzbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Eu, B.C. (1992). Kinetic theory and irreversible thermodynamics. John Wiley & Sons, Inc.Google Scholar
  9. [9]
    Nettleton, R. (1960). Phys. Fluids, 3, 216.CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    Müller, I. (1967). Z. Physik. 198, 329.zbMATHCrossRefADSGoogle Scholar
  11. [11]
    Garcia-Colin, L., Lopez de Haro, M., Rodriquez, R., Casas-Vázquez, J. and Jou, D. (1984). J. Stat. Phys. 37 465.CrossRefADSGoogle Scholar
  12. [12]
    Garcia-Colin, L. (1988). Rev. Mex. Fisica. 34, 344.Google Scholar
  13. [13]
    Eu B.C. (1980). J. Chem. Phys. 73, 2958.ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    Jou, D., Casas-Vázquez, J. arid Lebon, G. (1979). J. Non-equilib. Ther. modymam. 4, 31.CrossRefADSGoogle Scholar
  15. [15]
    Lebon, G., Casas-Vázquez, J. arid Jou, D. (1980). J. Phys. A, 13, 275.CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    Lebon, G., Jou, D., arid Casas-Vázquez,.J. (1992). Contemp. Phys. 33,(1), 41–51.CrossRefADSGoogle Scholar
  17. [17]
    Maxwell, J.C. (1879). Phil. Trans. Roy. Soc. 170, 231–56.zbMATHCrossRefGoogle Scholar
  18. [18]
    Brush, S.G. (1976). The kind of motion we call heat. 2 Vols. North-Holland Pub. Co., Amsterdam.Google Scholar
  19. [19]
    Burnett, D. (1935). Proc. London Math. Soc. 39, 385–430, and in 40, 382–435.zbMATHCrossRefGoogle Scholar
  20. [20]
    Chapman, S. and Cowling, T.G. (1941). Proc. Roy. Soc. A. 179, 159.ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    Grad, H. (1949). Comm. Pure and Appl. Math. 2, 311–407.Google Scholar
  22. [22]
    Grad, H. (1952). Comm. Pure and Appl. Math. 5, 257.zbMATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    Chapman, S. and Cowling, T.G. (1970). The mathematics theory of non-uniform gases. Cambridge University Press.Google Scholar
  24. [24]
    Woods, L.C. (1983). J. Fluid Mech. 136, 423–433.ADSzbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • L. C. Woods
    • 1
  1. 1.Mathematical InstituteUniversity of OxfordEngland

Personalised recommendations