Developments in Normal and Gravitational Thermodynamics

  • Geoffrey L. Sewell
Part of the Understanding Chemical Reactivity book series (UCRE, volume 18)


We review developments in three areas of thermodynamics, resulting from advances in statistical mechanics and relativity theory. These concern (a) the resolution of some basic questions, concerning the thermodynamic variables and the phase structure of normal matter, (b) thermodynamical instabilities in non-relativistic gravitational systems, and (c) Black Hole thermodynamics, as formulated in terms of strictly observable quantities, and thus not involving any BH entropy concept.


Black Hole Entropy Density Phase Coexistence Thermodynamic Variable Black Hole Thermodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruelle. D. (1969) Statistical Mechanics, W. A. Benjamin, Inc., New York.zbMATHGoogle Scholar
  2. 2.
    Thirring, W. (1980) Quantum Mechanics of Large Systems, Springer, New York.Google Scholar
  3. 3.
    Sewell, G.L. (1989) Quantum Theory of Collective Phenomena, Oxford University Press, Oxford.Google Scholar
  4. 4.
    Hertel, P. and Thirring, W. (1971) in H.P. Durr (ed.) Quanten und Felder, Vieweg, Braunschweig, pp. 310–323.Google Scholar
  5. 5.
    Von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton.zbMATHGoogle Scholar
  6. 6.
    Bekenstein, J. (1973) Phys. Rev. D 7, 2333–2346; and (1981) in Y. Neeman (ed.) Jerusalem Einstein Centenary Conference, Addison-Wesley, Reading, pp. 42–62.ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Hawking, S.W. (1976) Phys. Rev. D 13, 191–197.CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Sewell, G.L. (1987) Phys. Lett. A 122, 309–311; (1987) Phys. Lett. A 123, 499 (Erratum).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Lieb, E.H. and Lebowitz, J.L. (1972) Adv. Math. 9, 316–398.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Griffiths, R.B. (1965) J. Math. Phys. 1447, 1447–1461.CrossRefADSGoogle Scholar
  11. 11.
    Sewell, G.L. (1991) in W. Gans, A. Blumen and A. Amann (eds.) Large-Scale Molecular Systems: Quantum and Stochastic Aspects (Nato ASI Series B), Plenum, New York, pp. 77–122.Google Scholar
  12. 12.
    Rockafellar, R.T. (1970) Convex Analysis, Princeton University Press, Princeton.zbMATHGoogle Scholar
  13. 13.
    Hertel, P., Narnhofer, H. and Thirring, W. (1972) Commun. Math. Phys. 28, 159–176.CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Narnhofer, H. and Sewell, G.L. (1980) Commun. Math. Phys. 71, 1–28.CrossRefMathSciNetzbMATHADSGoogle Scholar
  15. 15.
    Messer, J. (1981) J. Math. Phys. 22, 2910–2917.CrossRefADSzbMATHMathSciNetGoogle Scholar
  16. 16.
    Misner, C.W., Thorne, K. and Wheeler, J.A. (1973) Gravitation, W. H. Freeman, San Francisco.Google Scholar
  17. 17.
    Bardeen, J.M., Carter, B. and Hawking, S.W. (1973) Commun. Math. Phys. 31, 161–170.CrossRefMathSciNetzbMATHADSGoogle Scholar
  18. 18.
    Hawking, S.W. (1975)Commun. Math. Phys. 43, 199–220.MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Landau, L.D. and Lifschitz, E.M. (1959) Statistical Physics, Pergamon Press, Oxford.Google Scholar
  20. 20.
    Sewell, G.L. (1982) Ann. Phys. 41, 201–224.MathSciNetADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Geoffrey L. Sewell
    • 1
  1. 1.Department of PhysicsQueen Mary and Westfield CollegeLondonUK

Personalised recommendations