Advertisement

Entropy of Sequences Generated by Nonlinear Processes: The Logistic Map

  • K. Rateitschak
  • J. Freund
  • W. Ebeling
Part of the Understanding Chemical Reactivity book series (UCRE, volume 18)

Keywords

Word Length Conditional Entropy Symbolic Dynamic Symbol Sequence Splitting Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broer, H.W. (1991) in E. van Groesen and E.M. de Jager (eds.) Structures in Dynamics-Finite Dimensional Deterministic Studies, North-Holland/Elsevier Science, Amsterdam, pp. 1–23.Google Scholar
  2. 2.
    Bai-lin, H. (1984) Chaos, World Scientific, Singapore.zbMATHGoogle Scholar
  3. 3.
    Collet, P. and Eckmann, J.P. (1980) Iterated Maps of the Interval as Dynamical Systems, Birkhäuser, Basel.Google Scholar
  4. 4.
    Alekseev, V.M. and Yakobson, M.V. (1981) Phys. Rep. 75, 290–325.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Arnold, V.I. and Avez, A. (1968) Ergodic Problems of Classical Mechanics, Benjamin, New York.Google Scholar
  6. 6.
    Eckmann, J.-P. and Ruelle, D. (1985) Rev. Mod. Phys. 57, 617–656.ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Ebeling, W., Engel, H. and Herzel, II. (1990) Selbstorganisation in der Zeit, Akademie-Verlag, Berlin.Google Scholar
  8. 8.
    Ebeling, W. and Nicolis, G. (1991) Europhys. Lett. 14, 191–196.ADSCrossRefGoogle Scholar
  9. 9.
    Ebeling, W. and Nicolis, G. (1992) Chaos, Solitons & Fractals 2, 635–650.CrossRefMathSciNetzbMATHADSGoogle Scholar
  10. 10.
    Szépfalusy, P. (1989) Physica Scripta T 25, 226–229.ADSCrossRefGoogle Scholar
  11. 11.
    Khinchin, A.I. (1957) Mathematical Foundations of Information Theory, Dover Publisher, New York.zbMATHGoogle Scholar
  12. 12.
    McMillan, B. (1953) Ann. Math. Statist. 24, 196–216.zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Schuster, H.G. (1989) Deterministic Chaos: An Introduction, VCH Verlag, Weinheim.zbMATHGoogle Scholar
  14. 14.
    Szépfalusy, P. and Gyorgyi, G. (1986) Phys. Rev. A33, 2852–2855.ADSGoogle Scholar
  15. 15.
    Grassberger, P. (1986) Intern. Journ. Theo. Phys. 25, 907–938.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Gramss, T. (1995) Phys. Rev. E 50, 2616–2620.ADSMathSciNetGoogle Scholar
  17. 17.
    Freund, J., Ebeling, W. and Rateitschak, K. (1996) submitted to Phys. Rev. E.Google Scholar
  18. 18.
    Ebeling, W. and Pöschel, T. (1994) Europhys. Lett. 26, 241–246.CrossRefADSGoogle Scholar
  19. 19.
    Ebeling, W., Pöschel, T. and Albrecht, K.F. (1995) Intern. Journ. for Bifurc. & Chaos 5, 51–61.zbMATHCrossRefGoogle Scholar
  20. 20.
    Ebeling, W., Neiman, A. and Pöschel, T. (1995) in: M. Suzuki (ed.) Coherent Approach to Fluctuations (Proc. Hayashibara Forum 95). World Scientific, Singapore.Google Scholar
  21. 21.
    Rateitschak, K., Ebeling, W. and Freund, J. (1996) submitted to Phys. Rev. E. Google Scholar
  22. 22.
    Herzel, H. and Große, I. (1995) Physica A 216, 518–542.ADSGoogle Scholar
  23. 23.
    Herzel, H., Ebeling, W. and Schmitt, A.O. (1995) Phys. Rev. E 50, 5061–5071.ADSGoogle Scholar
  24. 24.
    Hopcroft, J.E. and Ullman, J.D. (1979) Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Reading.zbMATHGoogle Scholar
  25. 25.
    Feigenbaum, M.J. (1978) J. Stat. Phys. 19, 25–52.CrossRefzbMATHMathSciNetADSGoogle Scholar
  26. 26.
    Freund, J. (1995) Dissertation, Humboldt University Berlin.Google Scholar
  27. 27.
    Rateitschak, K. (1995) diploma thesis, Humboldt University Berlin.Google Scholar
  28. 28.
    Schroeder, M.R. (1991) Fractals, Chaos, Power Laws, Freeman, New York.zbMATHGoogle Scholar
  29. 29.
    Li, W. (1991) Phys. Rev. A 43, 524–5260.ADSGoogle Scholar
  30. 30.
    Li, W. (1992) Int. Journ. for Bifurc. & Chaos 2, 137–154.zbMATHCrossRefGoogle Scholar
  31. 31.
    Jaglom, A.M. and Jaglom, I.M. (1984) Wahrscheinlichkeit und Information, VEB Deutscher Verlag der Wissenschaften, Berlin.zbMATHGoogle Scholar
  32. 32.
    Kolmogorov, A.N. (1965) Probl. of Inform. Theory 1, 3–13.zbMATHMathSciNetGoogle Scholar
  33. 33.
    Chaitin, G.J. (1975) Journal of the A. C. M. 22, 329–345.zbMATHMathSciNetGoogle Scholar
  34. 34.
    Grassberger, P. (1989) Helv. Phys. Acta 62, 489–508.MathSciNetGoogle Scholar
  35. 35.
    Atmanspacher, H., Kurths, J., Scheingraber, H., Wackerbauer, R. and Witt, A. (1992) Open Systems Information & Dynamics 1, 269–276.zbMATHCrossRefGoogle Scholar
  36. 36.
    Ackerbauer, R., Witt, A., Atmanspacher, H., Feudel, F., Kurths, J. and Scheingraber, H. (1994) Chaos, Solitons & Fractals 4, 133–173.MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • K. Rateitschak
    • 1
  • J. Freund
    • 1
  • W. Ebeling
    • 1
  1. 1.Institute of PhysicsHumboldt-University BerlinBerlinGermany

Personalised recommendations