Skip to main content

Phenomenological Macroscopic Symmetry in Dissipative Nonlinear Systems

  • Chapter
  • 502 Accesses

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 18))

Abstract

We show that systems whose equations of motion are derivable from a Lagrangian formulation extended to allow for dissipative effects by the inclusion of dissipative forces of the form (resistance X flow) and subject to constraints expressing conservation of quantities such as mass and charge possess a symmetry property at stationary states arbitrarily far from thermodynamic equilibrium. Examples of such systems are electrical networks] discrete mechanical systems and systems of chemical reactions. The symmetry is in general only an algebraic one, not the differential Onsager reciprocity valid close to equilibrium; the more general property does reduce to the Onsager result in the equilibrium limit, however. No restrictions are placed on the form of the resistances for dissipative processes; they may have arbitrary dependencies on the state of the system and/or its flows. Thus, the symmetry property is not limited to linear systems. The approach presented here leads naturally to the proper set of flows and forces for which the Onsager-like symmetry holds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Callen, H. (1985) Thermodynamics and Introduction to Thermostatistics, Wiley, New York.

    MATH  Google Scholar 

  2. Onsager, L. (1931) Phys. Rev. 37,405–426.

    Article  ADS  MATH  Google Scholar 

  3. Onsager, L. (1931) Phys. Rev. 38,2265–2279.

    Article  ADS  MATH  Google Scholar 

  4. deGroot, S. R. and Mazur, P. (1984) Non-Equilibrium Thermodynamics, Dover, New York.

    Google Scholar 

  5. Keizer, J. (1987) Statistical Thermodynamics of Nonequilibrium Processes, Springer, New York.

    Google Scholar 

  6. Essig, A. and Caplan, S. R. (1981) Proc. Natl. Acad. Sci. (USA) 78,1647–1651.

    Article  ADS  Google Scholar 

  7. Rothschild, K. J., Elias, S. A., Essig, A. and Stanley, H. E. (1980) Biophys. J. 30, 209–230.

    Article  Google Scholar 

  8. Stucki, J. W., Compiani, M. and Caplan, S. R. (1983) Biophys. Chem. 18, 101–109.

    Article  Google Scholar 

  9. Keizer, J. (1979) Acc. Chem. Res. 12,243–249.

    Article  ADS  Google Scholar 

  10. Keizer, J. (1979) in H. Haken (ed.), Pattern formation by dynamic systems and pattern recognition, Springer, New York, pp. 266–277.

    Google Scholar 

  11. Prigogine, I. (1967) Introduction to thermodynamics of irreversible processes, Wiley, New York.

    Google Scholar 

  12. Glansdorff, P. and Prigogine, I. (1971) Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley, New York.

    MATH  Google Scholar 

  13. Nicolis, G. and Prigogine, I. (1977) Self-Organization in Nonequilibrium Systems, Wiley, New York.

    MATH  Google Scholar 

  14. Shiner, J. S. (1987) J. Chem. Phys. 87,1089–1094.

    Article  ADS  Google Scholar 

  15. Shiner, J. S. (1992) in S. Sieniutycz and P. Salamon (eds.) Flow, Diffusion and Rate Processes (Adv. Thermodyn. Vol. 6), Taylor and Francis, New York, pp. 248–282.

    Google Scholar 

  16. Rayleigh, J. W. S. (1945) The Theory of Sound, Dover, New York.

    MATH  Google Scholar 

  17. Goldstein, H. (1980) Classical Mechanics, Addison-Wesley, Reading.

    MATH  Google Scholar 

  18. Whittaker, E. T. (1988) A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, University Press, Cambridge.

    MATH  Google Scholar 

  19. Casimir, H.B.G. (1945) Rev. Mod. Phys. 17,342–350.

    Article  ADS  Google Scholar 

  20. MacFarlane, A. G. J. (1970) Dynamical System Models, Harrap, London.

    MATH  Google Scholar 

  21. Ross, J., Hunt, K.L.C. and Hunt, P.M. (1988) J. Chem. Phys. 88,2719–2729.

    Article  ADS  Google Scholar 

  22. Grabert, H., Hänggi, P. and Oppenheim, I. (1983) Physica 117A, 300–316.

    ADS  Google Scholar 

  23. Sieniutycz, S. (1987) Chem. Eng. Sci. 42,2697–2711.

    Article  Google Scholar 

  24. Hill, T. L. (1977) Free Energy Transduction in Biology, Academic Press, New York.

    Google Scholar 

  25. Sieniutycz, S. and Shiner, J.S. (1992) Open Sys. Information Dyn. 1,149–182.

    Article  MATH  Google Scholar 

  26. Sieniutycz, S. and Shiner, J.S. (1992) Open Sys. Information Dyn. 1,327–348.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Shiner, J.S., Sieniutycz, S. (1996). Phenomenological Macroscopic Symmetry in Dissipative Nonlinear Systems. In: Shiner, J.S. (eds) Entropy and Entropy Generation. Understanding Chemical Reactivity, vol 18. Springer, Dordrecht. https://doi.org/10.1007/0-306-46932-4_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-46932-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4128-4

  • Online ISBN: 978-0-306-46932-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics