Advertisement

On Positivity of Rate of Entropy in Quantum-Thermodynamics

  • M. Kaufmann
  • W. Muschik
  • D. Schirrmeister
Part of the Understanding Chemical Reactivity book series (UCRE, volume 18)

Abstract

The rate of entropy is discussed for several different dynamics of the generalized canonical operator: Canonical dynamics, Robertson dynamics, and contact time dynamics. For two discrete systems in contact the rate of entropy is positive definite, if the contact time is short, and if one of the two discrete systems is in equilibrium and the compound system of both is isolated.

Keywords

Heat Exchange Density Operator Discrete System Compound System Contact Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dougherty, J.P. (1994) Phil. Trans. R. Soc. Lond. A 346, 259–305.ADSzbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Muschik, W. and Kaufmann, M. (1993) in W. Ebeling and W. Muschik (eds.) Statistical Physics and Thermodynamics of Nonlinear Nonequilibrium Systems-Statistical Physics 18 Satellite Meeting, World Scientific, Singapore, pp. 229–242.Google Scholar
  3. 3.
    Schwegler, H. (1955) Z. Naturforsch 20a, 1543–1553.MathSciNetADSGoogle Scholar
  4. 4.
    Jaynes, E.T. (1957) Phys. Rev. 106, 620.CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    Jaynes, E.T. (1957) Phys. Rev. 108, 171.CrossRefADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    Jaynes, E.T. (1979) in R. D. Levine and M. Tribus (eds.) The Maximum Entropy Formalism, MIT Press, Cambridge.Google Scholar
  7. 7.
    Muschik, W. and Kaufmann, M. (1994) J. Non-Equilib. Thermodyn. 19 76–94.zbMATHCrossRefADSGoogle Scholar
  8. 8.
    Schirrmeister, D. (1994) Diplomarbeit, Institut für Theoretische Physik, Technische Universtität Berlin.Google Scholar
  9. 9.
    Mori, H. (1965) Progr. Theor. Phys. 34, 399.ADSCrossRefGoogle Scholar
  10. 10.
    Fick, E. and Sauermann, G. (1983) Quantenstatistik dynamischer Prozesse (vol. 1), Verlag Harri Deutsch, Thun, Frankfurt/Main.Google Scholar
  11. 11.
    Kawasaki, K. and Gunton, J. D. (1973) Phys. Rev. A8, 2048.ADSGoogle Scholar
  12. 12.
    Robertson, B. (1966) Phys. Rev. 144, 151.CrossRefADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    Balian, R., Achassid, Y. and Reinhardt, H. (1986) Physics Reports 131, 1–146.CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Muschik, W. (1977) Arch. Rat. Mech. Anal. 66, 379–401.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Muschik, W. and Brunk, G. (1977) Int. J. Engng. Sci. 15, 377.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Muschik, W. (1981) in O. Brulin and R.K.T. Hsieh (eds.) Continuum Models of Discrete Systems 4, North-Holland, Amsterdam, p. 511.Google Scholar
  17. 17.
    Muschik, W. (1990) Aspects of Non-Equilibrium Thermodynamics, 6 Lectures on Fundamentals and Methods, World Scientific, Singapore, Sect. 4.1.Google Scholar
  18. 18.
    Muschik, W. and Fang, J. (1989) Acta Phys. Hung. 66, 39–57.MathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • M. Kaufmann
    • 1
  • W. Muschik
    • 1
  • D. Schirrmeister
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations