Quantum Theory of Solvent Effects and Chemical Reactions

  • O. Tapia
  • J. Andres
  • F. L. M. G. Stamato
Part of the Understanding Chemical Reactivity book series (UCRE, volume 17)


Quantum State Saddle Point Quantum Theory Solvent Effect Transition State Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tapia, O. (1980) Local field representation of surrounding medium effects. From liquid solvent to protein core effects, in Daudel, R., Pullman, A., Salem, L. and Veillard, A. (eds.), Quantum theory of chemical reactions, Reidel, Dordrecht, pp.25–72.Google Scholar
  2. 2.
    Tapia, O. and Johannin, G.: An inhomogeneous self-consistent reaction field theory of protein core effects. Towards a quantum scheme for describing enzyme reactions, J. Chem. Phys., 75 (1981), 3624–3635CrossRefGoogle Scholar
  3. 3.
    Tapia, O. (1982) Quantum theories of solvent-effect representation: an overview of methods and results,in Ratajczack, H. and Orville-Thomas, W. J. (eds.), Molecular. Interactions, Wiley, Chichester, pp.47–117.Google Scholar
  4. 4.
    Tapia, O. (1989) An overview of the theory of chemical reactions and reactivity in enzymes and solution, in Maruani, J. (eds.), Molecules in Physics, Chemistry and Biology, Kluwer Academic Publishers, Dordrecht, pp.405–422.Google Scholar
  5. 5.
    Tapia, O. (1992) Theoretical evaluation of solvent effects, in Maksic, Z. B. (eds.), Theoretical models of chemical bonding, Spinger-Verlag, Berlin, pp.43.5–458.Google Scholar
  6. 6.
    Tapia, O.:Solvent effect theories: quantum and classical formalisms and their applications in chemistry and biochemistry, J. Math. Chem., 10 (1992), 139–181Google Scholar
  7. 7.
    Angyan, J. G. and Jansen, G.: Arc direct reaction field methods appropriate for describing dispersion interactions?, Chem. Phys. Lett., 175 (1990), 313–318Google Scholar
  8. 8.
    Tomasi, J., Bonaccorsi, R., Cammi, R. and Olivares del Valle, F. J.: Theoretical chemistry in solution. Some results and perspectives of the continuum methods and in particular of the polarizable continuurn model, .J.Mol.Struct., 234 (1991), 401–424Google Scholar
  9. 9.
    Angyan, J.: Common theoretical framework for quantum chemical solvent effect theories, J.Math.Chem., 10 (1992), 93–137Google Scholar
  10. 10.
    Dillet, V., Rinaldi, D., Angyan, J. and Rivail, J.-L.: Reaction field factors for the multipole distribution in a cavity surrounded by a continuum, Chem.Phys.Lett., 202 (1993, 18–22CrossRefGoogle Scholar
  11. 11.
    Tomasi, J. (1994) Application of continuurn solvation models based on a Quantum Mechanical Hamiltonian., in Cramer, C. J. and Truhlar, D. G. (eds.), Structure and Reactivity in Aqueous Solution, American Chemical Society, Washington, pp. 10–23.Google Scholar
  12. 12.
    Tomasi, J. and Persico, M.: Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent, Chem.Rev., 94 (1994), 2027–2094CrossRefGoogle Scholar
  13. 13.
    Jansen, G., Angyan, J. and Colonna, F., First European Conference on computational chemistry., (1994)Google Scholar
  14. 14.
    Warshel, A. and Levitt, H.: Theoretical studies of enzymatic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme, J. Mol. Biol., 103 (1976), 227–249CrossRefGoogle Scholar
  15. 15.
    Devanlt, D.: Quantum mechanical tunnelling in biological systems, Quarterly Review of Biophysics, 13 (1980), 387–564Google Scholar
  16. 16.
    Bash, P. A., Field, M. J. and Karplus, M.: Free energy perturbation method for chemical reactions in the condensed phase: a dynamical approach based on a combined quantum and molecular mechanics potential, J.Am.Chem.Soc., 109 (1987), 8092–8096CrossRefGoogle Scholar
  17. 17.
    Warshel, A., Chu, Z. T. and Parson, W. W.: Dispersed polaron simulations of electron transfer in photosynthetic reaction centers, Science, 246 (1989), 112–116Google Scholar
  18. 18.
    Äqvist, J. and Warshel, A.: Free energy relationship in metalloenzyme-catalyzed reactions. Calculations of the effects of metal ion substitutions in staphylococcal nuclease, J.Am.Chem.Soc., 112 (1990), 2860–2868Google Scholar
  19. 19.
    Bolton, J. R. and Archer, M. D. (1991) Basic electron-transfer theory, in Bolton, J. R., Mataga, N. and McLendon, G. (eds.), Electron Transfer in Inorganic, Organic and Biological Systems, American Chemical Society, 7–23.Google Scholar
  20. 20.
    Bauschlicher, C. W. and Langhoff, S. R.: Quantum mechanical calculations to chemical accuracy, Science, 254 (1991), 394–398Google Scholar
  21. 21.
    Bowman, J. M.: Reduced dimensionality theory of quantum reactive scattering, J.Phys. Chem., 95 (1991), 4960–4968Google Scholar
  22. 22.
    Daggett, V., Schröder, S. and Kollman, P.: Catalytic pathways of serine proteases: classical and quantum mechanical calculations, J. Am. Chem. Soc., 113 (1991), 8926–8935CrossRefGoogle Scholar
  23. 23.
    Rivail, J. L., Loos, M. and Thery, V., Trends Ecol. Phys. Chem., Proc. Int. Workshop Ecol. Phys. Chem., 2nd (1992) 17–26Google Scholar
  24. 24.
    Zeng, J., Craw, J. S., Hush, N. S. and Reimers, J. R.: Medium effects on molecular and ionic electronic spectra. Application to the lowest 1(n,π*) state of dilute pyridine in water, Chem.Phys.Lett., 206 (1993), 323–328Google Scholar
  25. 25.
    Jorgensen, W. L., Blake, J. F., Lim, D. and Severance, D. L.: Investigation of solvent effects on pericyclic reactions by computer simulations, J.Chem.Soc., Faraday Trans., 90 (1994), 1727–1732CrossRefGoogle Scholar
  26. 26.
    Jortner, J., Levine, R. D. and Pullman, B. (ed.), The Jerusalem Symposia on Quantum Chemistry and Biochemistry, Kluwer Acad.Pub., Dordrecht, 1994.Google Scholar
  27. 27.
    Knops-Gerrits, P.-P., De Vos, D., Thibault-Starzyk, F. and Jacobs, P. A.: Zeolite-encapsulated Mn(II) complexes as catalysts for alkene oxidation, Nature, 369 (1994), 543–546CrossRefGoogle Scholar
  28. 28.
    Rasaiah, J. and Zhu, J. (1994) Solvent dynamics and electron transfer reactions, in Gauduel, Y. and Rossky, P. J. (eds.), Ultrafast reaction dynamics and solvent effects, AIP Press, New York, pp.421–434.Google Scholar
  29. 29.
    Storer, J. W., Giesen, D.J., Hawkins, G. D., Lynch, G. C., Cramer, C. J., Truhlar, D. G. and Liotard, D. A. (1994) Solvation modeling in aqueous and nonaqueous solvents., in Cramer, C. J. and Truhlar, D. G. (eds.), Structure and Reactivity in Aqueous Solution, American Chemical Society, Washington, pp.24–49.Google Scholar
  30. 30.
    Spears, K. G.: Models for electron transfer with vibrational state resolution, J.Phys. Chem., 99 (1995), 2469–2476CrossRefGoogle Scholar
  31. 31.
    Luzhkov, V. and Warshel, A.: Microscopic models for quantum mechanical calculations of chemical processes in solutions: LD/AMPAC and SCAAS/AMPAC calculations of solvation energies, J.Comp.Chem., 13 (1992), 199–213Google Scholar
  32. 32.
    Evans, M. G. and Polanyi, M.: Inertia and driving force of chemical reactions, Disc.Faraday Soc, (1938), 11–24Google Scholar
  33. 33.
    Wigner, E.: The transition state method, Trans.Faraday Soc., 34 (1938), 29–41Google Scholar
  34. 34.
    Glasstone, K. J., Laidler, K. J. and Eyring, H.: Theory of rate processes, McGraw-Hill, New York, 1941Google Scholar
  35. 35.
    Garret, B. C. and Truhlar, D. G.: Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J.Phys.Chem., 83 (1979), 1052–1079Google Scholar
  36. 36.
    Garret, B. C. and Truhlar, D. G.: Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules, J.Phys. Chem., 83 (1979), 1079–1112Google Scholar
  37. 37.
    Laidler, K. J. and King, M. C.: The development of transition-state theory, J. Phys. Chem., 87 (1983), 2657–2664CrossRefGoogle Scholar
  38. 38.
    Fong. F. K.: A successor to transition-state theory, Acc.Chem.Res., 9 (1976), 433–438CrossRefGoogle Scholar
  39. 39.
    Miller, W. H.: Beyond transition state theory: a rigorous quantum theory of chemical reaction rates, Acc. Chem. Res., 26 (1993), 174–181Google Scholar
  40. 40.
    Bolton, J. B., Mataga, N. and McLendon, G.: Advances in Chemistry Series CSC Symposium Series 2, 1991Google Scholar
  41. 41.
    Marcus, R. A.: Schrödinger equation for strongly interacting electron-transfer systems, J.Phys.Chem., 96 (1992), 1753–1757Google Scholar
  42. 42.
    Pauling, L.: Nature of forces between large molecules of biological interest, Nature, 161 (1948), 707–709Google Scholar
  43. 43.
    Tapia, O. and Andres, J.: On a quantum theory of chemical reactions and the role of in vacuum transition structures. Primary and secondary sources of enzyme catalysis, J.Mol.Str (THEOCHEM), 335 (1995), 267–286Google Scholar
  44. 44.
    Feynman, R. P.: Statistical mechanics, Benjamin,lnc., Reading, 1972Google Scholar
  45. 45.
    Feynman, R. P.: Quantum electrodynamics, Benjamin, Inc., New York, 1961Google Scholar
  46. 46.
    Craig, D. P. and Thirunamachandran, T.: Molecular quantum electrodynamics, Academic Press, London, 1984Google Scholar
  47. 47.
    Sakurai, J. J.: Modern Quantum Mechanics, Benjamin/Cummings, Menlo Park, 1985Google Scholar
  48. 48.
    McQuarrie, D. A.: Statistical mechanics, Harper & Row, New York, USA, 1976Google Scholar
  49. 49.
    Baer, M.: Adiabatic and diabatic representations for atom-molecule collisions: Treatment of the collinear arrangement, Chem.Phys.Lett., 35 (1975), 112–118CrossRefGoogle Scholar
  50. 50.
    Baer, M.: Adiabatic and diabatic representations for atom-diatom collisions: Treatment of the three-dimensional case, Chem.Phys., 15 (1976), 49–57CrossRefGoogle Scholar
  51. 51.
    Chapuisat, X., Nauts, A. and Dehareng-Dao, D.: Adiabatic-to-diabatic electronic state transformation and curvilinear nuclear coordinates for molecular systems, Chem.Phys.Lett., 95 (1983), 139–143CrossRefGoogle Scholar
  52. 52.
    Naray-Szabo, G., Surjan, P. R. and Angyan, J. G.: Applied Quantum Chemistry, Reidel, Dordrecht, 1987Google Scholar
  53. 53.
    Park, D.: Introduction to the quantum theory, MacGraw-Hill, New York, 1974Google Scholar
  54. 54.
    Cortes, E., West, B. J. and Lindenberg, K.: On the generalized Langevin equation: classical and quantum mechanical, J.Chem.Phys., 82 (1985), 2708–2717Google Scholar
  55. 55.
    Deumens, E., Diz, A., Longo, R. and Öhrn, I.: Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems, Rev.Mod.Phys., 66 (1994), 917–983CrossRefGoogle Scholar
  56. 56.
    Kroto, H. W.: Molecular rotation spectra, Dover Publications Inc., New York, 1992Google Scholar
  57. 57.
    Roos, B. J. (1992) The multiconfigurational (MC) self-consistent field (SCF) theory, in Roos, B. J.(eds.), Lecture notes in quantum chemistry, Springer-Verlag, Berlin, pp. 179–254.Google Scholar
  58. 58.
    Cohen-Tannoudji, C., Dupont-Roc, J. and Grynberg, G.: Processus d’interaction entre photons et atomes, InterEditions/Editions du CNRS, Paris, 1988Google Scholar
  59. 59.
    Park, D.: Classical dynamics and its quantum analogues, Springer-Verlag, Berlin, 1990Google Scholar
  60. 60.
    Gao, J. and Xia, X. (1994) Simulating solvent effects on reactivity and interactions in ambient and supercritical water, in Cramer, C. J. and Truhlar, D. G.(eds.), Structure and Reactivity in Aqueous Solution, American Chemical Society, Washington, pp.212–228.Google Scholar
  61. 61.
    Jansen, G., Colonna, F. and Angyan, J. G.: Mixed quantum-classical calculations on the water molecule in liquid phase: Influence of a polarizable environment on electronic properties, Int.J. Quantum Chem, in press (1995)Google Scholar
  62. 62.
    Carloni, P., Blöchl, P. E. and Parrinello, M.: Electronic structure of the Cu,Zn superoxide dismutase active site and its interactions with the substrate, J.Phys.Chem., 99 (1995), 1338–1348CrossRefGoogle Scholar
  63. 63.
    Eyring, H.: The activated complex in chemical reactions, J. Chem. Phys., 3 (1935), 107–115Google Scholar
  64. 64.
    Eliason, M. A. and Hirschfelder, J. O.:General collision theory for the rate of bimolecular, gas phase reactions, .J. Chem. Phys., 30 (1959), 1426.1436Google Scholar
  65. 65.
    Marcus, R. A.: Theoretical relations among rate constants, barriers, and Bronsted slopes of chemical reactions., J. Phys. Chem., 72 (1968), 891CrossRefGoogle Scholar
  66. 66.
    Laidler, K. J.: Theories of chemical reaction rates, McGraw-Hill, New York, 1969Google Scholar
  67. 67.
    Caldwell, D. and Eyring, H. (1971) Quantum-mechanical rate processes, in Yourgrau, W. and van der Merwe, A.(eds.), Perpectives in quantum theory, Dover Publications,Inc., New York, pp. 117–138.Google Scholar
  68. 68.
    Truhlar, D. G. and Garrett, B. C.: Variational transition-state theory, Acc. Chem. Res., 13 (1980), 440–448CrossRefGoogle Scholar
  69. 69.
    Cerjan, C. J. and Miller, W. H.: On finding transition states, J.Chem.Phys., 75 (1981), 2800–2806CrossRefGoogle Scholar
  70. 70.
    Pollak, E.: Theory of activated rate processes: a new derivation of Kramer’s expression, J. Chem.Phys., 85 (1986), 865–867CrossRefGoogle Scholar
  71. 71.
    Miller, W. H.: The theory of chemical reaction dynamics, Reidel, Dordrecht, Netherlands, 1986Google Scholar
  72. 72.
    Truhlar, D. G. and Steckler, R.: Potential energy surfaces for polyatomic reaction dynamics, Chem. Rev., 87 (1987), 217–236CrossRefGoogle Scholar
  73. 73.
    Hwang, J. K., Chu, Z. T., Yadav, A. and Warshel, A.: Simulations of quantum mechanical corrections for rate constants of hydride-transfer reactions in enzymes and solutions, J. Phys. Chem., 95 (1991), 8445–8448Google Scholar
  74. 74.
    Lobaugh, J. and Voth, G. A.: Calculation of quantum activation free energies for proton transfer reactions in polarsolvents, Chem. Phys. Lett., 198 (1992), 311–315CrossRefGoogle Scholar
  75. 75.
    Borgis, D. (1992) Proton transfer reactions in solutions: a molecular approach, in Electron Proton Transfer Chem.Biol., 345–362.Google Scholar
  76. 76.
    Marcus, R. A. and Siddarth, P.: Theory of electron transfer reactions and comparison with experiments, NATO ASI Ser., Ser. C, 376(Photoprocesses in Transition Metal Complexes, Biosystems and Other Molecules) (1992), 49–88Google Scholar
  77. 77.
    Tominaga, K., Kliner, D. A. V., Johnson, A. E., Levinger, N. E. and Barbara, P. E.: Femtosecond experiments and absolute rate calculations on intervalence electron transfer of mixed-valence compounds, J.Chem.Phys., 98 (1993), 1228–1243CrossRefGoogle Scholar
  78. 78.
    Borgis, D. and Hynes, J. T.: Dynamical theory of proton tunneling transfer rates in solution: general formulation, Chem. Phys., 170(1993), 315–346CrossRefGoogle Scholar
  79. 79.
    Basilevsky, M. V., Chudinov, G. E. and Napolov, D. V.: Calculation of the rate constant for the reaction chloride + chloromethane —τ C1CH3 + C1-in the framework of the continuum medium model, J. Phys Chem., 97 (1993), 3270–3277CrossRefGoogle Scholar
  80. 80.
    Miller, W. H.: Quantum mechanical theory of collisional recombination rates, J.Phys. Chem., 99 (1995), 12387–12390Google Scholar
  81. 81.
    Herring, C.: Critique of the Heitler-London method of calculating spin couplings at large distances, Rev.Mod.Phys., 34 (1962), 631–645CrossRefGoogle Scholar
  82. 82.
    Herring, C. and Flicker, M.: Asymptotic exchange coupling of two hydrogen atoms, Phys.Rev., 134 (1964), A362–A366CrossRefGoogle Scholar
  83. 83.
    Migdal, A. B. and Krainov, V. P.: Approximation methods in quantum mechanics, Benjamin,Inc., New York, 1969Google Scholar
  84. 84.
    Levine, R. D. and Bernstein, R. B.: Molecular reaction dynamics and chemical reactivity, Oxford University Press, New York, 1987Google Scholar
  85. 85.
    Shaik, S. S., Schlegel, H. B. and Wolfe, S.: Theoretical aspects of physical organic chemistry, Wiley, New York, 1992Google Scholar
  86. 86.
    Hase, W. L.: Simulation of gas-phase chemical reactions: Applications to SN2 nucleophilic substitution, Science, 266 (1994), 998–1002Google Scholar
  87. 87.
    Kearley, G. J., Fillaux, F., Baron, M.-H., Bennington, S. and Tomkinson, J.: A new look at proton dynamics along the hydrogen bonds in amides and peptides, Science, 264 (1994), 1285–1289Google Scholar
  88. 88.
    Mezey, P. G.: Catchment region partitioning of energy hypersurfaces,I., Theoret.chim.Acta(Berl.), 58 (1981), 390–330Google Scholar
  89. 89.
    Mezey, P. G.: Topology of energy hypersurfaces, Theoret.Chim.Acta (Berl.), 62 (1982), 133–161CrossRefGoogle Scholar
  90. 90.
    Schrödinger, E. (1983) The present situation in quantum mechanics: A translation of Schrödinger’s “Cat Paradox” paper,in Wheeler, J. A. and Zurek, W. H.(eds.), Quantum theory and measurement, Princeton University Press, Princeton, New Jersey, pp.152–167.Google Scholar
  91. 91.
    Zeilinger, A., Bernstein, H. J., Greenberger, D. M., Horne, M. A. and Zukowski, M. (1993) Controlling entanglement in quantum optics,in Esawa, H. and Murayama, Y.(eds.), Quantum control and measurement, Elsevier, Amsterdam, pp.9–22Google Scholar
  92. 92.
    Langbein, D.: Theory of van der-Waals attraction, Springer-Verlag, Berlin, 1974Google Scholar
  93. 93.
    Andres, J., Cárdenas, R., Silla, E. and Tapia, 0.: A theoretical study of the Meyer-Schuster reaction mechanism: minimum-energy profile and properties of transition-state structures, J. Am. Chem. Soc., 110 (1988), 666–672CrossRefGoogle Scholar
  94. 94.
    Tapia, O., Cardenas, R., Andres. J. and Colonna-Cesari, F.: Transition structure for hydride transfer to pyridinium cation from methanolate. Modeling of LADH catalyzed reaction, J. Am. Chem. Soc., 110 (1988), 4046–4047CrossRefGoogle Scholar
  95. 95.
    Tapia, O., Andres, J., Aullo, J. M. and Cardenas, R.: Electronic aspects of the hydride transfer mechanism. Part 2. Ab initio analytical gradient studies of the pyridinium cation/1,4-dihydropyridine, ciclopropenyl-cation/cyclopropene and formaldehyde/methanolate model reactant system, J. Mol. Struct. THEOCHEM., 167 (1988). 395–412CrossRefGoogle Scholar
  96. 96.
    Andres, J., Moliner, V. and Safont, V. S.: Theoretical kinetic isotope effects for the hydride-transfer step in Lactate Dehydrogenase, J. Chem. Soc. Faraday Trans., 90 (1994)Google Scholar
  97. 97.
    Andres, J., Safont, V. S., Martins, J. B. L., Beltran, A. and Moliner, V.: AMI and PM3 transition structure for the hydride transfer. A model of reaction catalyzed by dihydrofolate reductase, J. Mol.Struct. THEOCHEM, 330 (1995), 411–417Google Scholar
  98. 98.
    Cardenas, R., Andrés, J., Krechl, J., Campillo, M. and Tapia, O.: On a possible invariance of a transition structure to the effects produced by ancyllary H-bonding molecules: Modelling the effects of Ser-48 in the hydride transfer step of liver alcohol dehydrogenase, Int.J.Quantum Chem., in press (1995)Google Scholar
  99. 99.
    Yliniemela, A., Konschin, H., Neagu, C., Pajunen, A., Hase, T., Brunow, G. and Teleman, O.:Design and synsthesis of a transition state analog for the ene reaction between maleimide and 1-alkenes, J.Am.Chem.Soc., 117 (1995), 5120–5126CrossRefGoogle Scholar
  100. 100.
    Tapia, O., Jacob, O. and Colonna, F.: Transition structures for carbon dioxide and formaldehyde hydroxylation reactions in the coordinate sphere of zinc, Theor. Chim. Acta, 8.5 (1993), 217–230Google Scholar
  101. 101.
    Tapia, O., Andres, J. and Safont, V. S.: Theoretical study of transition structures for intramolecular hydrogen transfer in molecular models representing D-ribulose-1,s-bisphosphate. A possible molecular mechanism for the enolization step in Rubisco, J.Phys.Chem., 98 (1994), 4821–4830CrossRefGoogle Scholar
  102. 102.
    Tapia, O., Andres, J. and Safont, V. S.: Enzyme catalysis and transition structures in vacuo. Transition structures for the enolization, carboxylation and oxygenation reactions in ribulose-1,5-bisphosphate carboxylase/oxygenase enzyme (Rubisco), J. Chem.Soc.Faraday Trans., 90 (1994), 2365–2374CrossRefGoogle Scholar
  103. 103.
    Tapia, O. and Andres, J.: A simple protocol to help calculate saddle points. Transition state structures for the Meyer-Schuster reaction in non-aqueous media: an ab initio MO study., Chem. Phys. Letters, 109 (1984), 471–477Google Scholar
  104. 104.
    Bertran, J., Gallardo, I., Moreno, M. and Saveant, J. M.: Dissociative electron transfer. Ab initio study of the carbon-halogen bond reductive cleavage in methyl and perfluoromethyl halides. Role of the solvent, J.Am.Chem.Soc., 114 (1992), 9576–9583CrossRefGoogle Scholar
  105. 105.
    Wesolowski, T. A. and Warshel, A.: Frozen density functional approach for ab initio calculations of solvated molecules, J.Phys.Chem., 97 (1993), 8050–8053CrossRefGoogle Scholar
  106. 106.
    Honig, B. and Nicholls, A.: Classical electrostatics in biology and chemistry, Science, 268 (1995), 1144.1149Google Scholar
  107. 107.
    Angyan, J. G.: Rayleigh-Schrödinger perturbation theory of non-linear Schrödinger equations with linear perturbation, Int.J.Quantum Chem., 47 (1993), 469–483Google Scholar
  108. 108.
    Angyan, J. G.: Choosing between alternative MP2 algoritms in the selfconsistent reaction field (SCRF) theory of solvent effects, Chem.Phys.Lett., in press (1995)Google Scholar
  109. 109.
    Gao, J.: Combined QM/MM simulation study of the Claisen rearrangement of allyl vinyl ether in aqueous solution, J.Am.Chem.Soc., 116 (1994), 1563–1564Google Scholar
  110. 110.
    Pappalardo, R. R., Sanchez Marcos, E., Ruiz-Lopez, M. F., Rinaldi, D. and Rivail, J. L.: Solvent effects on molecular geometries and isomerization processes: A study of push-pull ethylenes in solution, J.Am.Chem.Soc., 115 (1993), 3722–3730CrossRefGoogle Scholar
  111. 111.
    Sánchez Marcos, E., Pappalardo, R. R. and Rinaldi, D.: Effects of the solvent reaction field on the geometrical structures of hexahydrate metallic cations, J.Phys. Chem., 95 (1991), 8928–8932CrossRefGoogle Scholar
  112. 112.
    Maran, U., Pakkanen, T. A. and Karelson, M.: A semiempirical study of the solvent effect on the Menshutkin reaction, J.Chem.Soc.Perkin II, submitted (1995).Google Scholar
  113. 113.
    Karelson, M. M. and Zerner, M. C.: Theoretical treatment of solvent effects on electronic spectroscopy, J.Phys. Chem., 96 (1992), 6949–6957CrossRefGoogle Scholar
  114. 114.
    Karelson, M., Tamm, T. and Zerner, M. C.: Multicavity reaction field method for the solvent effect description in flexible molecular systems, J.Phys.Chem., 97 (1993), 11901–11907CrossRefGoogle Scholar
  115. 115.
    Zhao, X. G. and Cuckier, R. I.: Molecular dynamics and quantum chemistry study of a proton-coupled electron transfer reaction, J.Phys. Chem., 99 (1995), 945–954Google Scholar
  116. 116.
    Glossman, M. D., Balbás, L. C., Rubio, A. and Alonso, J. A.: Nonlocal exchange and kinetic energy density functionals with correct asymptotic behavior for electronic systems, Int.J. Quantum Chem., 49 (1994), 171–184CrossRefGoogle Scholar
  117. 117.
    Bersuker, I. B.: On the limitations of the density functional theory in electronic structure calculations, Int.J. Quantum Chem., submitted (1995)Google Scholar
  118. 118.
    Soirat, A., Flocco, M. and Massa, L.: Approximately N-representable density functionals density matrices, Int.J.Quantum Chem., 49 (1994), 291–298CrossRefGoogle Scholar
  119. 119.
    Marx, D. and Parrinello, M.: Structural quantum effects and three-centre two-electron bonding in CH5+, Nature, 375 (1995), 216–218CrossRefGoogle Scholar
  120. 120.
    Tuckerman, M., Laasonen, K., Sprik, M. and Parrinello, M.: Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH-ions in water, J.Phys.Chem., 99 (1995), 5749–5752CrossRefGoogle Scholar
  121. 121.
    Tuckerman, M., Laasonen, K., Sprik, M. and Parrinello, M.: Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water, J.Chem.Phys., 103 (1995), 150–161CrossRefGoogle Scholar
  122. 122.
    Porezag, D. and Pederson, M. R.: Density functional based studies of transition states and barriers for hydrogen exchange and abstraction reactions, J. Chem.Phys., 102 (1993, 9345–9349Google Scholar
  123. 123.
    Tapia, O., Colonna, F. and Angyan, J. G.: Generalized self-consistent reaction field theory in multicenter-multipole ab initio LCGO framework. I. Electronic properties of the water molecule in a Monte Carlo sample of liquid water molecules studied with standard basis sets, J.Chim.Phys., (1990), 875–903Google Scholar
  124. 124.
    Warshel, A.: Computer simulations of enzymatic reactions, Curr. Op. in Struct. Biol, 2 (1992), 230–236Google Scholar
  125. 125.
    Merz Jr., K. M.: Computer simulation of enzymatic reactions, Curr Op. in Struct. Biol., 3 (1993), 234–240Google Scholar
  126. 126.
    Gao, J.: Monte Carlo quantum mechanical-configutration interaction and molecular mechanics simulations of solvent effects on the n-→π* blue shift in acetone, J.Am.Chem.Soc., 116 (1994), 9324–9328Google Scholar
  127. 127.
    Kubo, R.: The fluctuation-dissipation theorem, Benjamin, Inc., New York, 1969Google Scholar
  128. 128.
    Wax, N.(ed.), Dover Publications, Inc., New York, 1954.Google Scholar
  129. 129.
    Adelman, S. A.: Generalized Langevin equations and many-body problems in chemical physics, Adv.Chem.Phys., 44 (1980), 143–253Google Scholar
  130. 130.
    Risken, H.: The Fokker-Planck equation, Springer-Verlag, Berlin, 1989Google Scholar
  131. 131.
    Evans, M. W., Evans, G. T., Coffey, W. T. and Grigolini, P.: Molecular dynamics and theory of broad band spectroscopy, John Wiley & Sons, New York, 1982Google Scholar
  132. 132.
    Straat, R. M.: The instantaneous normal modes of liquids, Acc.Chem.Res., 28 (1995), 201–207Google Scholar
  133. 133.
    Lindenberg, K. and West, B. J.: Statistical properties of quantum systems: The linear oscillator, Phys.Rev.A, 30 (1984), 568–582CrossRefGoogle Scholar
  134. 134.
    Kittel, C.: Introduction to solid state physics, Wiley & Sons, Inc., New York, 1976Google Scholar
  135. 135.
    Skinner, J. L. and Trommsdorf, H. P.: Proton transfer in benzoic acid crystals: A chemical spin-boson problem. Theoretical analysis of nuclear magnetic resonance, neutron scattering, and optical experiments, J.Chem.Phys., 89 (1988), 897–907CrossRefGoogle Scholar
  136. 136.
    Blaizot, J.-P. and Ripka, G.: Quantum theory of finite systems, The MIT Press, Cambridge, Massachusetts, 1986Google Scholar
  137. 137.
    Zwanzig, R. W. (1961) Statistical mechanics of irreversibility, in Brittin, W. E., Downs, B. W. and Downs, J.(eds.), Lectures in theoretical physics, Interscience Pub.Inc., New York, pp. 106–141.Google Scholar
  138. 138.
    West, B. J. and Lindenberg, K.: Energy transfer in condensed media. 1. Two-level systems, J.Chem.Phys., 83 (198S), 4118–4135Google Scholar
  139. 139.
    Christov, S. G.: Two types of Kramers rate equations for reactions in condensed media, Int.J.Quantum Chem., 52 (1994), 1219–1228CrossRefGoogle Scholar
  140. 140.
    Pollak. E.: Quantuin theory of activated rate processes: a maximum free energy approach, J.Chem.Phys., 103 (1995), 973–980CrossRefGoogle Scholar
  141. 141.
    Brown, D. W., Lindenberg, K. and West, B. J.: Energy transfer in condensed media. II. Comparison of stochastic Liouville equations, J.Chem.Phys., 83 (1985), 4136–4143Google Scholar
  142. 142.
    Brown, D. W., Lindenberg, K. and West, B. J.: On the dynamics of polaron formation in a deformable medium, J.Chem.Phys., 84 (1986), 1574–1582Google Scholar
  143. 143.
    Leggett, A. J., Chakravarty, S., Dorsey, A. T., Fisher, M. P., Garg, A. and Zwerger, W.: Dynamics of the dissipative two-state system, Rev.Mod.Phys., 59 (1987), 1–85CrossRefGoogle Scholar
  144. 144.
    Smith, B. B., Staib, A. and Hynes, J. T.: Well and barrier dynamics and electron transfer rates. A molecular dynamics study, Chem.Phys., 176 (1993), 521–537CrossRefGoogle Scholar
  145. 145.
    Smith, B. B. and Hynes, J. T.: Electron friction and electron transfer rates at metallic electrodes, J.Chem.Phys., 99 (1993), 6517–6530Google Scholar
  146. 146.
    Zewail, H. A.: FEMTOCHEMISTRY. Ultrafast dynamics of the chemical bond, World Scientific, Singapore, 1994Google Scholar
  147. 147.
    Jimenez, R., Fleming, G. R., Kumar, P. V. and Maroncelli, M.: Femtosecond solvation dynamics of water, Nature, 369 (1994), 471–473CrossRefGoogle Scholar
  148. 148.
    Richter, W., Lee, S., Warren, W. S. and He, Q.: Imaging with intermolecular multiple-quantum coherences in solution nuclear magnetic resonance, Science, 267 (1995), 654–657Google Scholar
  149. 149.
    He, Q., Richter, W., Vathyam, S. and Warren, W. S.: Intermolecular multiple-quantum coherences and cross correlations in solution nuclear magnetic resonance, J.Chem.Phys., 98 (1993), 6779–6800CrossRefGoogle Scholar
  150. 150.
    Skrebkov, O. V.: Diffusional description of vibrational realaxation in a binary mixture of diatomic molecules-quantum oscillators, Chem.Phys., 191 (1995), 87–99CrossRefGoogle Scholar
  151. 151.
    Åberg, U., Åkesson, E., Alvarez, J.-L., Fedchenia, I. and Sundström, V.: Femtosecond spectral evolution monitoring the bond-twisting event in barrierless isomerization in solution, Chem.Phys., 183 (1994), 269–288Google Scholar
  152. 152.
    Dirac, P. A. M.: The principles of quantum mechanics, Clarendon Press, Oxford, 1947Google Scholar
  153. 153.
    Loudon, R.: The quantum theory of light, Clarendon Press, Oxford, 1986Google Scholar
  154. 154.
    Ballentine, L. E.: Quantum mechanics, Prentice Hall, Englewood Cliffs, 1990Google Scholar
  155. 155.
    Mannervik, B. (1981) Design and analysis of kinetic experiment for discrimination between rival models, in Endrenyi, L.(eds.), Kinetic data analysis, Plenum Pub.Co., New York, pp.Google Scholar
  156. 156.
    Tapia, O., Poulain, E. and Sussman, F.: Hydrogen Bond. Environmental effects on proton potential curves. An SCRF MO CNDO/2 calculation of a water dimer, Chem.Phys.Lett., 33 (1975), 65–70CrossRefGoogle Scholar
  157. 157.
    Hemley, R. J., Soos, Z. G., Hanfland, M. and Mao, H.-k.: Charge-transfer states in dense hydrogen, Nature, 369 (1994), 384–387CrossRefGoogle Scholar
  158. 158.
    Basché, T., Kummer, S. and Bräuchle, C.: Direct spectroscopic observation of quantum jumps of a single molecule, Nature, 373 (1995), 132–134Google Scholar
  159. 159.
    Pechukas, P.: Time-dependent semiclassical scattering theory. I. Potential scattering, Phys.Rev., 181 (1969), 166–174Google Scholar
  160. 160.
    Pechukas, P.: Time-dependent semiclassical scattering theory. II. Atomic collisions, Phys.Rev., 181 (1969), 174–185Google Scholar
  161. 161.
    Basilevsky, M. V. and Ryaboy, V. M.: Two approaches to the calculation of molecular resonance states: Solution of scattering equations and matrix diagonalization, J.Comp.Chem., 8 (1987), 683–699Google Scholar
  162. 162.
    Lefebvre, R. and Moiseyev, N.: Artificial resonance procedure for the determination of quantum mechanical rate constants in the tunneling regime, J. Chem. Phys., 93 (1990), 7173–7178CrossRefGoogle Scholar
  163. 163.
    Clary, D. C.: Quantum scattering calculations on the OH + H2 (v =0.1), OH + D2, and OD + H2 reactions, J. Chem. Phys., 96 (1992), 3656–3665Google Scholar
  164. 164.
    Ryaboy, V. and Lefebvre, R.: Flux-flux correlation function study of resonance effects in reactive collision, J. Chem. Phys., 99 (1993), 9547–9552Google Scholar
  165. 165.
    Lefebvre, R., Ryaboy, V. and Moiseyev, N.: Resonance and reaction, J. Mol. Struct. (THEOCHEM), 332 (1995), 209–215CrossRefGoogle Scholar
  166. 166.
    Davis, M. J.: Bottlenecks to intramolecular energy transfer and the calculation of relaxation rates, J. Chem. Phys., 83 (1985), 1016–1031CrossRefGoogle Scholar
  167. 167.
    Williams, I. H. and Maggiora, G. M.: Use and abuse of the distinguished-coordinate method for transition-state structure searching, J. Mol. Struct. (THEOCHEM), 89 (1982), 365–378CrossRefGoogle Scholar
  168. 168.
    DePuy, C. H., Gronert, S., Mullin, A. and Bierbaum, V. M.: Gas-phase SN2 and E2 reactions of alkyl halides, J.Am.Chem.Soc., 112 (1990), 8650–8655CrossRefGoogle Scholar
  169. 169.
    Borman, S.:New insight gained on gas-phase SN2 reaction, Chem.Eng.News, (1992), 22–26Google Scholar
  170. 170.
    Cyr, D. M., Scarton, M. G. and Johnson, M. A.: Photoelectron spectroscopy of the gas-phase SN2 reaction intermediates I.CH3I and I-.CD3I: Distorsion of the CH3I at the “ion-dipole” complex, J.Chem.Phys., 99 (1993), 4869–4872Google Scholar
  171. 171.
    Wladkowski, B. D., Allen, W. D. and Brauman, J. I.: The SN2 identity reaction F-+CH3F-→ FCH3 + F-, J.Phys.Chem., 98 (1995), 13532–13540Google Scholar
  172. 172.
    Tapia, O., Paulino, M. and Stamato, F. M. L. G.: Computer assisted simulations and molecular graphics methods in molecular design. 1.Theory and applications to enzyme active-site directed drug design, Mol.Eng., 3 (1994), 377–414CrossRefGoogle Scholar
  173. 173.
    Tapia, O. and Andres, J.: Towards an explanation of carboxylation/oxygenation bifuinctionality in Rubisco. Transition structure for the carboxylation reaction of 2,3,4-pentanetriol., Mol. Eng., 2 (1992), 37–41CrossRefGoogle Scholar
  174. 174.
    Tapia, O., Andres, J. and Cardenas, R.: Transition structure for the hydride transfer reaction from formate anion to cyclopropenyl cation: a simple theoretical model for the reaction catalyzed by formate dehydrogenase, Chem. Phys. Lett, 189 (1992), 395–400CrossRefGoogle Scholar
  175. 175.
    Mezey, P. G. (1981) Optimization and analysis of energy hypersurfaces,in Csizmadia, I. G. and Daudel, R.(eds.), Computational theoretical organic chemistry, 101–128.Google Scholar
  176. 176.
    Hu, W.-P. and Truhlar, D. G.: Structural distorsion of CH3I in an ion-dipole precursor complex, J.Phys.Chem., 98 (1994), 1049–1052Google Scholar
  177. 177.
    Zewail, A. H.: FEMTOCHEMISTRY. Ultrafast dynamics of the chemical bond, World Scientific, Singapore, 1994Google Scholar
  178. 178.
    Zare, R. N.: Reactions a l a mode, Nuture, 365 (1993), 105–106Google Scholar
  179. 179.
    Guettler, R. D., Jones Jr., G. C., Posey, L. A. and Zare, R. N.: Partial control of an ion-molecule reaction by selection of internal motion of the polyatomic reagent ion, Science, 266 (1994), 259–261Google Scholar
  180. 180.
    Gericke, K.-H.: Control of ion-molecule reactions in the gas phase, Angew.Chem.lnt.Ed.Engl., 34 (1995), 885–886Google Scholar
  181. 181.
    Tapia, O., Cardenas, R., Andres, J., Krechl, J., Campillo, M. and Colonna-Cesari, F.: Electronic aspects of LADH catalytic mechanism, Int. J. Quantum. Chem., 39 (1991), 767–786CrossRefGoogle Scholar
  182. 182.
    Andres, J., Safont, V. S., Queralt, J. and Tapia, O: A theoretical study of the singlet-triplet energy gap dependence upon rotation and pyramidalization for 1,2-dihydroxyethylene. A simple model to study the enediol moiety in rubisco’s substrate., J. Phys. Chem., 97 (1993), 7888–7893CrossRefGoogle Scholar
  183. 183.
    Andres, J., Moliner, V., Krechl, J. and Silla, E.: Comparison of several semiempirical and ab initio methods for transition state structure characterization. Addition of CO2 to CH3NHCONH2, J. Phys. Chem., 98 (1994), 3664–3668Google Scholar
  184. 184.
    Andres, J., Moliner, V., Krechl, J., Domingo, J. L. and Picher, M. T.: A theoretical study of the molecular mechanism for the methanol oxidation by PQQ, J. Am. Chem. Soc., 117 (1995), 8807–8815CrossRefGoogle Scholar
  185. 185.
    Pritchard, H. O.: The quantum theory of unimolecular reactions, Cambridge University Press, Cambridge, 1984Google Scholar
  186. 186.
    Zhao, M. and Rice, S. A.: Resonance state approach to quantum transition state theory, J. Phys. Chem., 98 (1994), 3444–2449Google Scholar
  187. 187.
    Truhlar, D. G. and Garrett, B. C.: Resonance state approach to quantum mechanical variational transition state theory, J. Phys. Chem., 96 (1992), 6515–6518CrossRefGoogle Scholar
  188. 188.
    Graul, S. T. and Bowers, M. T.: The nonstatical dissociation dynamics of Cl-(CH3Br): evidence for vibrational excitation in the products of gas-phase SN2 reactions, J. Am. Chem. Soc., 113 (1991). 9696–9697CrossRefGoogle Scholar
  189. 189.
    Viggiano, A. A., Morris, R. A., Paschkewitz, J. S. and Paulson, J. F.: Kinetics of the gas-phase reactions of CI-with CH3Br and CD3Br: experimental evidence for nonstatistical behavior, J.Am. Chem.Soc., 114 (1992), 10477–10482Google Scholar
  190. 190.
    Graul, S. T. and Bowers, M. T.: Vibrational excitation in products of nucleophilic substitution: the dissociation of metastable X-(CH3Y) in the gas phase, J.Am.Chem.Soc, 116 (1994), 3875–3883CrossRefGoogle Scholar
  191. 191.
    Vande Linde, S. R. and Hase, W. L.: Trajectory studies of SN2 nucleophilic substitution. I. Dynamics of CI + CH3C1 reactive collisions, J.Chem.Phys., 93 (1990)Google Scholar
  192. 192.
    Cho, Y. J., Vande Linde, S. R., Zhu, L. and Hase, W. L.: Trajectory studies of SN2 nucleophilic substitution. II. Nonstatistical central barrier recrossing in the CI-+ CH3C1 system, J. Chem.Phys., 96 (1992), 8275–8287Google Scholar
  193. 193.
    Viggiano, A. A., Morris, R. A., Su, T., Wladkowski, B. D., Craig, S. L., Zhong, M. and Brauman, J. I.: The SN2 identity exchange reaction 37C1-+ 35CICH2CN-→ 35C1 + 37CICH2CN: Kinetic energy and temperature dependence, J.Am.Chem.Soc., 116 (1994), 2213–2214CrossRefGoogle Scholar
  194. 194.
    Morris, R. A. and Viggiano, A. A.: Kinetics of the reactions of F-with CF3Br and CF31 as a function of temperature, kinetic energy, internal temperature, and pressure, J.Phys. Chem., 98 (1994), 3740–3746Google Scholar
  195. 195.
    Breen, J. J., Peng, L. W., Willberg, D. M., Heikal, A., Cong, P. and Zewail, A. H.: Real-time probing of reactions,in clusters, J.Chem.Phys., 92 (I990), 805–807Google Scholar
  196. 196.
    Leggett, A. J.: Quantum tunneling in the presence of an arbitrary linear dissipation mechanism, Phys. Rev.B, 30 (1984), 1208–1218CrossRefGoogle Scholar
  197. 197.
    Makri, N. and Miller, W. H.: Basis method for describing the quantum mechanics of a "system" interacting with a harmonic bath, J. Chem. Phys., 86 (1987), 1451–1457CrossRefGoogle Scholar
  198. 198.
    Kim, H. J. and Hynes, J. T.: Equilibrium and nonequilibrium solvation and solute electronic structure, Int.J.Quantum Chem., 24 (1990), 821–833Google Scholar
  199. 199.
    Kim, H. J. and Hynes, J. T.: A theoretical model for SN1 ionic dissociation in solution. 1. Activation free energy and transition-state structure, J.Am.Chem.Soc., 114 (1992), 10508–10528Google Scholar
  200. 200.
    Kim, H. J. and Hynes, J. T.: A theoretical model for SNI ionic dissociation in solution. 2. Nonequilibriurn solvation reaction path and reaction rate, J.Am.Chem.Soc., 114 (1992), 10528–10537Google Scholar
  201. 201.
    Tapia, O. and Lluch, J. M.: Solvent effects on chemical reaction profiles.I. Monte Carlo simulation of hydration effects on quantum chemically calculated stationary structures, J. Chem.Phys., 83 (1983, 3970–3982Google Scholar
  202. 202.
    Tapia, O., Lluch, J. M., Cardenas, R. and Andres, J.: Theoretical study of solvation effects in chemical reactions. A combined quantum chemical/Monte Carlo study of the Meyer-Schuster reaction mechanism in water, J. Am. Chem. Soc., 111 (1989), 829–835CrossRefGoogle Scholar
  203. 203.
    Gouverneur, V. E., Houk, K. N., Pascual-Teresa, B., Beno, B., Janda, K. D. and Lerner, R. A.: Control of the exo and endo pathways of the Diels-Alder reaction by antibody catalysis, Science, 262 (1993), 204–208Google Scholar
  204. 204.
    Fersht, A.: Enzyme structure and mechanism, W.H.Freeman &Co., New York, 1985Google Scholar
  205. 205.
    Levy, M. and Perdew, J. P.: Success of quantum mechanical approximations for molecular geometries and electron-nuclear attraction expectation values: gift of the Coulomb potential ?, J. Chem. Phys., 84 (1986), 4519–4523CrossRefGoogle Scholar
  206. 206.
    Sitnitsky, A. E.: Fluctuations of electric fields in enzyme active sites as an efficient source of reaction activation, Chem.Phys.Lett., 240 (1995), 47–52CrossRefGoogle Scholar
  207. 207.
    Mathews, C. K. and van Holde, K. E.: Biochemistry, Benjamin/Cummings, Redwood City, 1990Google Scholar
  208. 208.
    Coates, G. W. and Waymouth, R. M.: Oscillating stereocontrol: A strategy for the synthesis of thermoplastic elastomeric propylene, Science, 267 (1993, 217–219Google Scholar
  209. 209.
    Hill, C. L. and Zhang, X.: A’ smart’ catalyst that self-assembles under turnover conditions, Nature, 373 (1995), 324–326CrossRefGoogle Scholar
  210. 210.
    Shabat, D., Itzhaky, H., Reymond, J.-L. and Keinan, E.: Antibody catalysis of a reaction otherwise strongly disfavoured in water, Nature, 374 (1995), 143–146CrossRefGoogle Scholar
  211. 211.
    Danishefsky, S.: Catalytic antibodies and disfavored reactions, Science, 259 (1993), 469–470Google Scholar
  212. 212.
    Li, T. L., Janda, K. D., Ashley, J. A. and Lerner, R. A.: Antibody catalyzed cationic cyclization, Science, 264 (1994), 1289–1293Google Scholar
  213. 213.
    Chandrasekhar, J., Smith, S. F. and Jorgensen, W. L.: SN2 reaction profiles in the gas phase and aqueous solution, J.Am.Chem.Soc., 106 (1984), 3049–3050Google Scholar
  214. 214.
    Chandrasekhar, J., Smith, S. F. and Jorgensen, W. L.: Theoretical examination of the SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solution, J. Am. Chem. Soc., 107 (1985), 154–163Google Scholar
  215. 215.
    Huston, S. E., Rossky, P. J. and Zichi, D. A.: Hydration effects on SN2 reaction: An integral equation study of free energy surface and corrections to transitiion-state theory, J.Am.Chem.Soc., 111 (1989), 5680–5687Google Scholar
  216. 216.
    Balbuena, P. B., Johnston, K. P. and Rossky, P. J.: Computer simulation of an SN2 reaction in supercritical water, J.Phys.Chem., 99 (1993, 1554–1565Google Scholar
  217. 217.
    Miertus, S., Scrocco, E. and Tomasi, J.: Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects., Chem. Phys., 55 (1981), 117–129CrossRefGoogle Scholar
  218. 218.
    Tunon, I., Silla, E. and Pascual-Ahuir, J. L.: Theoretical study of the inversion of the alcohol acidity scale in aqueous solution. Toward an interpretation of the acid-base behavior of organic compunds in solution, J. Am. Chem. Soc., 115 (1993), 2226–2230CrossRefGoogle Scholar
  219. 219.
    Tortonda, F. R., Pascual-Ahuir, J. L., Silla, E. and Tunon, I.: Solvent effects on the thermodynamics and kinetics of the proton transfer between hydronium ions and ammonia. A Theoretical study using the continuum and the discrete models, J. Phys. Chem., 99 (1995), 12525–12531CrossRefGoogle Scholar
  220. 220.
    Mikkelsen, K. V., Joergensen, P. and Aagard-Jensen, H. J.: A multiconfiguration self-consistent reaction field response method, J. Chem.Phys., 100 (1994), 6597–6607Google Scholar
  221. 221.
    Mikkelsen, K., Luo, Y., Ågren, H. and Joergensen, P.: Solvent induced polarizabilities and hyperpolarizabilities of para-nitroaniline studied by reaction field linear response theory, J.Chem.Phys., 100 (1994), 8240–8250Google Scholar
  222. 222.
    Aguilar, M. A., Olivares del Valle, F. J. and Tomasi, J.: Nonequilibrium solvation: an ab initio quantum-mechanical method in the continuum cavity model approximation, J.Chem.Phys., 98 (1993), 7375–7384CrossRefGoogle Scholar
  223. 223.
    Aguilar, M., Bianco, R., Miertus, S., Persico, M. and Tomasi, J.: Chemical reactions in solution: modeling of the delay of solvent synchronism (dielectric friction) along the reaction path of an SN2 reaction, Chem. Phys., 174 (1993), 397–407CrossRefGoogle Scholar
  224. 224.
    Diercksen, G. H. F., Karelson, M., Tamm, T. and Zerner, M. C.: Multicavity SCRF calculation of ion hydration energies, Int.J. QuantumChem.:Quantum Chem.Symp., 28 (1994), 339–348Google Scholar
  225. 225.
    Liu, Y.-P. and Newton, M. D.: Solvent reorganization and donor/acceptor coupling in electron-transfer processes: self-consistent reaction field theory and ab initio applications, J.Phys. Chem., 99 (1995), 12382–12386Google Scholar
  226. 226.
    Truong, T. N. and Stefanovich, E. V.: A new method for incorporating solvent effect into the classical ab initio molecular orbital and density functional theory frameworks for arbitrary shape cavity, Chem.Phys.Lett., 240 (1995), 253–260CrossRefGoogle Scholar
  227. 227.
    de Souza, L. E. S. and Ben-Amotz, D.: Solvent mean force perturbations of diatomic dissociation reactions. Comparison of perturbed hard fluid and computer simulation results, J. Chem. Phys., 101 (1994), 4117–4122Google Scholar
  228. 228.
    de Souza, L. E. S. and Ben-Amotz, D.: Hard fluid model for molecular solvation free energies, J.Chem.Phys., 101 (1994), 9858–9863Google Scholar
  229. 229.
    Vaidehi, N., Wesolowski, T. A. and Warshel, A. J.: Quantum-mechanical calculations of solvation free energies. A combined ab initio pesudopotential free-energy perturbation approach, J.Chem.Phys., 97 (1992), 4264–4271CrossRefGoogle Scholar
  230. 230.
    Chen, J. L., Noodleman, L., Case, D. A. and Bashford, D.: Incorporating solvation effects into density functional electronic structure calculations, J. Phys. Chem., 98 (1994), 11059–11068Google Scholar
  231. 231.
    Wei, D. and Salahub, D. R.: Hydrated proton clusters and solvent effects on the proton transfer barrier: a density functional study, J. Chem. Phys., 101 (1994), 7633–7642Google Scholar
  232. 232.
    Cramer, C. J. and Truhlar, D. G.: General parametrized SCF model for free energies of solvation in aqueous solution, J. Am. Chem. Soc., 113 (1991), 8305–8311Google Scholar
  233. 233.
    Giesen, D. J., Storer, J., Cramer, C. J. and Truhlar, D. J.: General semiempirical quantum mechanical solvation model for nonpolar solvation free energies. n-hexadacane., J.Am. Chem.Soc., 117 (1995), 1057–1068CrossRefGoogle Scholar
  234. 234.
    Tannor, D. J., Marten, B., Murphy, R., Friesner, R. A., Sitkoff, D., Nicholls, A., Honig, B., Ringnalda, M. and Goddard, W. A., III: Accurate first principles calculation of molecular charge distributions and solvation energies from ab initio Quantum Mechanics and continuum dielectric theory., J. Am. Chem. Soc., 116 (1994), 11875–11882CrossRefGoogle Scholar
  235. 235.
    Orozco, M., Luque, F. J., Habibollahzadeh, D. and Gao, J.: The polarization contribution to the free energy of hydration, J.Chem.Phys., 102 (1995), 6145–6152CrossRefGoogle Scholar
  236. 236.
    Stouten, P. W., Froemmel, C., Nakamura, H. and Sander, C.: An effective solvation term based on atomic occupancies for use in protein simulations, Mol. Simul., 10 (1993), 97–120Google Scholar
  237. 237.
    Fraga, S. and Thornton, S. E.: Theoretical studies of peptidic structures. Environmental effects, Theor. Chim. Acta, 85 (1993), 61–67CrossRefGoogle Scholar
  238. 238.
    Collura, V. P., Greaney, P. J. and Robson, B.: A method for rapidly assessing and refining simple solvent treatments in molecular modeling. ExampIe studies on the antigen-combining loop H2 from FAB fragment McPC603, Protein Eng., 7 (1994), 221–233CrossRefGoogle Scholar
  239. 239.
    Guba, W. and Kessler, H.: A novel computational mimetic of biological membranes in molecular dynamics simulations, J.Phys.Chem., 98 (1994). 23–27CrossRefGoogle Scholar
  240. 240.
    Cifra, P. and Bleha, T.: Conformer populations and the excluded volume effect in lattice simulations of flexible chains in solutions, Polymer, 34 (1993). 3716–3722Google Scholar
  241. 241.
    Hartsough, D. S. and Merz Jr., K. M.: Potential of mean force calculations on the SN1 fragmentation of tert-butyl chloride, J.Phys. Chem., 99 (1995), 384–390Google Scholar
  242. 242.
    Lecea, B., Arrieta, A., Roa, G., Ugalde, J. M. and Cossio, F. P.: Catalytic and solvent effects on the cycloaddition reaction between ketenes and carbonyl compounds to form 2-oxetanones, J.Am. Chem.Soc., 116 (1994), 9613–9619CrossRefGoogle Scholar
  243. 243.
    Pardo, L., Osman, R., Weinstein, H. and Rabinowitz, J. R.: Mechanisms of nucleophiIic addition to activated double bonds: 1,2-and 1,4-Michael addition of ammonia, J.Am.Chem.Soc., 115 (1993), 8263–8269CrossRefGoogle Scholar
  244. 244.
    Davidson, M. M., Hillier, I. H., Hall, R. J. and Burton, N. A.: Effect of solvent on the Claisen rearrangement of allyl vinyl ether using ab initio continuum methods, J.Am.Chem.Soc., 116 (1994), 9294–9297CrossRefGoogle Scholar
  245. 245.
    Lim, D., Hrovat, D. A., Borden, W. T. and Jorgensen, W. L.: Solvent effects on the ring opening of cyclopropanones to oxyallyls: a combined ab initio and Monte Carlo study, J.Am.Chem.Soc., 116 (1994), 3494–3499CrossRefGoogle Scholar
  246. 246.
    Reguero, M., Pappalardo, R. R., Robb, M. A. and Rzepa, H. S.: An MCSCF study of the effect of substituents and solvent on the [2 + 2] cycloaddition of tert-butylcyanoketene to phenylethene, J.Chem.Soc., Perkin Trans. 2, (1993), 1499–1502Google Scholar
  247. 247.
    Dejaegere, A., Liang, X. and Karplus, M.: Phosphate ester hydrolysis: calculation of gas-phase reaction paths and solvation effects, J.Chem.Soc., Faraday Trans., 90 (1994), 1763–1770CrossRefGoogle Scholar
  248. 248.
    Balbuena, P. B., Johnston, K. P. and Rossky, P. J.: Molecular simulation of a chemical reaction in supercritical water, J.Am.Chem.Soc., 116 (1994), 2689–2690CrossRefGoogle Scholar
  249. 249.
    Gupta, R. B., Combes, J. R. and Johnston, K. P.: Solvent effect on hydrogen bonding in supercritical fluids, J.Phys. Chem., 97. (1993), 707–715Google Scholar
  250. 250.
    Jessop, P. G., Ikariya, T. and Noyori, R.: Homogenous catalysis in supercritical fluids, Science, 269 (1995), 1065–1069Google Scholar
  251. 251.
    Keszei, E., Murphrey, T. H. and Rossky, P. J.: Electron hydration dynamics: simulation results compared to pump and probe experiments, J.Phys.Chem., 99 (1995), 22–28CrossRefGoogle Scholar
  252. 252.
    Schwartz, B. J. and Rossky, P. J.: Aqueous solvation dynamics with a quantum mechanical solute: computer simulation studies of the photoexcited hydrated electron, J.Chem.Phys., 101 (1994), 6902–6916Google Scholar
  253. 253.
    Schwartz, B. J. and Rossky, P. J.: Pump-probe spectroscopy of the hydrated electron: a quantum molecular dynamics simulation, J. Chem. Phys., 101 (1994), 6917–6926Google Scholar
  254. 254.
    Schultz, K. E., Russel, D. H. and Harris, C. B.: The applicability of binary collision theories to complex molecules in simple liquids, J.Chem.Phys., 97 (1992), 5431–5438Google Scholar
  255. 255.
    Cho, M. and Fleming, G. R.: Photon-echo measurements in liquids: numerical calculations with model systems, J. Chem. Phys., 98 (1993), 2848–2859Google Scholar
  256. 256.
    Torrie, G. M. and Patey, G. N.: Molecular solvent model for an electrical double layer: asymmetric solvent effects, J.Phys.Chem., 97 (1993). 12909–12918CrossRefGoogle Scholar
  257. 257.
    Zhang, L., Davis, H. T. and White, H. S.: Simulations of solvent effects on confined electrolytes, J.Chem.Phys., 98 (1993), 5793–5799Google Scholar
  258. 258.
    Scherer, P. L. J. and Fischer, S. F.: Theoretical analysis of the photoinduced electron transfer in porphyrin-quinone cyclophanes, Chem.Phys.Lett., 190 (1992), 574–580CrossRefGoogle Scholar
  259. 259.
    Burshtein, A. I.: Diffusional desaturation of electron transfer, J.Chem.Phys., 98 (1993), 4711–4717CrossRefGoogle Scholar
  260. 260.
    Tachiya, M. and Hilczer, M. (1994) Solvent effect on the electron transfer rate and the energy gap law, in Gauduel, Y. and Rossky, P. J. (eds.), Ultrafast reaction dynamics and solvent effects, AIP Press, New York, pp.447–459.Google Scholar
  261. 261.
    Rauhut, G. and Clark, T.: Molecular orbital studies of electron-transfer reactions, J.Chem.Soc., Faraday Trans., 90 (1994), 1783–1788CrossRefGoogle Scholar
  262. 262.
    Marguet, S., Mialocq, J. C., Millie, P., Berthier, G. and Momicchioli, F.: Intramolecular charge transfer and trans-cis isomerization of the DCM styrene dye in polar solvents. A CS-INDO MRCI study, Chem.Phys., 160 (1992), 265–279CrossRefGoogle Scholar
  263. 263.
    Simon, J. D. and Doolen, R.: On the dimensionality of the reaction coordinate of intramolecular charge-transfer reactions in protic solvents, J.Am.Chem.Soc., 114 (1992), 4861–4870CrossRefGoogle Scholar
  264. 264.
    Gould, I., Young, R. H., Mueller, L. J., Albrecht, A. C. and Farid, S.: Electronic structures of exciplexes and excited charge-transfer complexes, J. Am. Chem. Soc., 116 (1994), 8188–8199Google Scholar
  265. 265.
    Broo, A.: Electronic structure of donor-spacer-acceptor molecules of potential interest for molecular electronics. I. Donor-.pi. spacer-acceptor, Chem. Phys., 169 (1993), 135–150Google Scholar
  266. 266.
    Marquez, F., Zabala, I. and Tomas, F.: Phosphorescence emission and polarization of 3-carboxyquinoline, J.Lumin., 55 (1993). 25–30Google Scholar
  267. 267.
    Torri, H. and Tasumi, M.: Correlation between redshifts and widths of the 0-0 band in the absorption spectra of all-trans-β-carotene in solution, J.Chem.Phys., 98 (1993), 3697–3702Google Scholar
  268. 268.
    Zeng, J., Craw, J. S., Hush, N. S. and Reimers, J. R.: Solvent effects on molecular and ionic spectra. 4. Photochemistry of Fe2+(H2O)6 in water revisited: possible mechanisms for the primacy absorption process leading to electron ejection, J. Phys. Chem., 98 (1994), 11075–11088CrossRefGoogle Scholar
  269. 269.
    Luhmer, M., Stein, M. L. and Reisse, J.: Relative polarity of 1,3-dioxane and 1,4-dioxane studied by the reaction field theory and via computer simulations, Heterocycles, 37 (1994), 1041–1051Google Scholar
  270. 270.
    Ben-Nun, M. and Levin, R. D.: Dynamics of bimolecular reactions in solution: a nonadiabatic activation mode, J.Chem.Phys., 97 (1992), 8341–8356CrossRefGoogle Scholar
  271. 271.
    Schenter, G. K., McRae, R. P. and Garrett, B. C.: Dynamic solvent effects on activated chemical reactions. I. Classical effects of reaction-path curvature, J.Chem.Phys., 97 (1992), 9116–9137CrossRefGoogle Scholar
  272. 272.
    Charutz, D. M. and Levine, R. D.: Dynamics of barrier crossing in solution: simulations and a hardsphere model, J.Chem.Phys., 98 (1993), 1979–1988CrossRefGoogle Scholar
  273. 273.
    Hu, X. and Martens, C. C.: Classical-trajectory simulation of the cluster-atom association reaction iodine-argon cluster (I-Am) + I-> I2 + nAr. I. Capture of iodine by the I(Ar)12 cluster, J.Chem.Phys., 98 (1993). 8551–8559Google Scholar
  274. 274.
    Maroncelli, M.: The dynamics of solvation in polar liquids, J.Mol.Liq., 57 (1993), 1–37CrossRefGoogle Scholar
  275. 275.
    Phelps, D. K., Weaver, M. J. and Ladanyi, B. M.: Solvent dynamic effects in electron transfer: molecular dynamics simulations of reactions in methanol, Chem. Phys., 176 (1993), 575–588CrossRefGoogle Scholar
  276. 276.
    Krause, J. L., Whitnell, R. M., Wilson, K. E. and Yan, Y. J. (1994) &“Classical&” quantum control with application to solution reaction dynamics, in Gauduel, Y. and Rossky, P. J. (eds.), Ultrafast reaction dynamics and solvent effects, AIP Press, New York, pp.3–15.Google Scholar
  277. 277.
    Pappalardo, R. M., Martinez, J. M. and Sanchez Marcos, E.: Geometrical structure of the cis-and trans-isomers of 1,2-dihaloethylenes and the energetics of their chemical equilibrium in solution., Chem.Phys.Lett., 225 (1994), 202–207CrossRefGoogle Scholar
  278. 278.
    Depaepe, J. M., Ryckaert, J. P. and Bellemans, A.: Kinetics of the geometric isomerization of cyclohexene in a stochastic bath, Mol. Phys., 78 (1993), 1575–1588Google Scholar
  279. 279.
    Weiss, S.: Molecular dynamics study of an isomerizing triatomic in solution, Mol.Phys., 81 (1994), 1281–1288Google Scholar
  280. 280.
    Wiberg, K. B. and Wong, M. W.: Solvent effects. 4. Effect of solvent on the E/Z energy difference for methyl formate and methyl acetate, J.Am.Chem.Soc., 115 (1993), 1078–1084Google Scholar
  281. 281.
    Contreras, J. G. and Alderete, J. B.: MO calculations of solvent effects on the prototropic tautomerism of 6-thiopurine, THEOCHEM, 115 (1994), 137–141Google Scholar
  282. 282.
    Rodrigues Prieto, F., Rios Rodriguez, M. C., Mosquera Gonzalez, M. and Rios Fernandez, M. A.: Ground-and excited-state tautomerism in 2-(3′-Hydroxy-2′-pyridyl)benzimidazole, J. Phys. Chem., 98 (1994), 8666–8672Google Scholar
  283. 283.
    El Tayar, N., Mark, A. E., Vallat, P., Brunne, R. A., Testa, B. and van Gunsteren, W. E.: Solvent-dependent conformation and hydrogen-bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations, J.Med. Chem., 36 (1993), 3757–3764Google Scholar
  284. 284.
    Alagona, G. and Ghio, C.: Stability and acidity of salicylic acid rotamersin aqueous solution. A continuous model study, J. Mol. Liq., 61 (1994), 1–16CrossRefGoogle Scholar
  285. 285.
    Migus, A., Gauduel, Y., Martin, J. L. and Antonetti, A.: Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime., Phys. Rev. Lett., 58 (1987), 1559–1562CrossRefGoogle Scholar
  286. 286.
    Long, F. H., Lu, H. and Eisenthal, K. B.: Femtosecond studies of the presolvated electron: an excited state of the solvated electron?, Phys.Rev.Lett., 64 (1990), 1469–1472Google Scholar
  287. 287.
    Long, F. H., Lu, H., Shi, X. and Eisenthal, K. B.: Intensity dependent geminate recombination in water., Chem.Phys.Lett., 185 (1991), 47–52CrossRefGoogle Scholar
  288. 288.
    Pommeret, S., Antonetti, A. and Gauduel, Y.: Electron hydration in pure liquid water. Existence of two nonequilibrium configuration in the near-IR region, J.Am.Chem.Soc., 113 (1991). 9105–9111CrossRefGoogle Scholar
  289. 289.
    Alfano, J. C., Walhout, P. K., Kimura, Y. and Barbara, P. F.: Ultrafast transient-absorption spectroscopy of the aqueous solvated electron, J.Chem.Phys., 98 (1993), 5996–5998CrossRefGoogle Scholar
  290. 290.
    Kimura, Y., Alfano, J. C., Walhout, P. K. and Barbara, P. F.: Ultrafast transient absorption spectroscopy of the solvated electron in water, J.Phys. Chem., 98 (1994), 3450–3458Google Scholar
  291. 291.
    Murphrey, T. H. and Rossky, P. J.: The role of solvent intramolecular modes in excess electron solvation dynamics, J.Chem.Phys., 99 (1993). 515–522CrossRefGoogle Scholar
  292. 292.
    Severance, D. L. and Jorgensen, W. L.: Effects of hydration on the Claisen rearrangement of allyl vinyl ether from computer simulations, J.Am.Chem.Soc., 114 (1992), 10966–10968CrossRefGoogle Scholar
  293. 293.
    Severance, D. L. and Jorgensen, W. L. (1994) Claisen rearrangement of allyl vinyl ether, in Cramer, C. J. and Truhlar, D. G. (eds.), Structure and Reactivity in Aqueous Solution, American Chemical Society, Washington, pp.243–259.Google Scholar
  294. 294.
    Andres, J., Bohm, S., Moliner, V., Silla, E. and Tunon, I.: A theoretical study of stationary structures for the addition of azide anion to tetrafuranosides: modeling the kinetic and thermodynamic controls by solvent effects, J. Phys. Chem., 98 (1994), 6955–6960Google Scholar
  295. 295.
    Hu, W.-P. and Truhlar, D. G.: Modeling transition state solvation at the single-molecule level: test of correlated ab initio predictions against experiment for the gas-phase SN2 reaction of microhydrated fluoride with methyl chloride, J.Am.Chem.Soc., 116 (1994), 7797–7800Google Scholar
  296. 296.
    Hase, W. L.: Variational unimolecular rate theory, Acc. Chem. Res., 16 (1983), 258–264CrossRefGoogle Scholar
  297. 297.
    Fong, F. K. (ed.), Radiationless processes. Topics in applied physics, Springer-Verlag, Berlin, 1976.Google Scholar
  298. 298.
    Ulstrup, J.: Charge transfer processes in condensed media, Springer-Verlag, Berlin, 1979Google Scholar
  299. 299.
    Broeckhove, J. and Lathouwers, L. (ed.), Time-dependent quantum molecular dynamics, NATO ASI Series B: Physics, Plenum Press, New York, 1992.Google Scholar
  300. 300.
    Jortner, J. and Pullman, B. (ed.), Intramolecular dynamics, The Jerusalem Symposia on Quantum Chemistry and Biochemistry, Reidel, Dordrecht, 1982.Google Scholar
  301. 301.
    Schatz, G. C., Colton, M. C. and Grant, J. L.: A Quasiclassical trajectory of the state-to-state dynamics of H + H2O ↔ OH + H2, J. Phys. Chem, 88 (1984), 2971–2977Google Scholar
  302. 302.
    Wang, D. and Bowman, J. M.: Reduced dimensionality quantum calculations of mode specificity in OH+H2 ↔ H2O+H, J.Chem.Phys., 96 (1992), 8906–8913Google Scholar
  303. 303.
    Polanyi, J. C. and Zewail, A. H.: Direct obesrvation of the transition state, Acc. Chem. Res., 28 (1995), 119–132CrossRefGoogle Scholar
  304. 304.
    Forst, W.: Unimolecular rate theory test in thermal reactions, J.Phys.Chem., 76 (1972), 342–348CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • O. Tapia
    • 1
  • J. Andres
    • 1
    • 2
  • F. L. M. G. Stamato
    • 1
  1. 1.Department of Physical ChemistryUniversity of UppsalaUppsalaSweden
  2. 2.Department of Experimental SciencesUniversitat Jaume1CastellóSpain

Personalised recommendations