Skip to main content

Quantum Theory of Solvent Effects and Chemical Reactions

  • Chapter
Solvent Effects and Chemical Reactivity

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 17))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tapia, O. (1980) Local field representation of surrounding medium effects. From liquid solvent to protein core effects, in Daudel, R., Pullman, A., Salem, L. and Veillard, A. (eds.), Quantum theory of chemical reactions, Reidel, Dordrecht, pp.25–72.

    Google Scholar 

  2. Tapia, O. and Johannin, G.: An inhomogeneous self-consistent reaction field theory of protein core effects. Towards a quantum scheme for describing enzyme reactions, J. Chem. Phys., 75 (1981), 3624–3635

    Article  CAS  Google Scholar 

  3. Tapia, O. (1982) Quantum theories of solvent-effect representation: an overview of methods and results,in Ratajczack, H. and Orville-Thomas, W. J. (eds.), Molecular. Interactions, Wiley, Chichester, pp.47–117.

    Google Scholar 

  4. Tapia, O. (1989) An overview of the theory of chemical reactions and reactivity in enzymes and solution, in Maruani, J. (eds.), Molecules in Physics, Chemistry and Biology, Kluwer Academic Publishers, Dordrecht, pp.405–422.

    Google Scholar 

  5. Tapia, O. (1992) Theoretical evaluation of solvent effects, in Maksic, Z. B. (eds.), Theoretical models of chemical bonding, Spinger-Verlag, Berlin, pp.43.5–458.

    Google Scholar 

  6. Tapia, O.:Solvent effect theories: quantum and classical formalisms and their applications in chemistry and biochemistry, J. Math. Chem., 10 (1992), 139–181

    Google Scholar 

  7. Angyan, J. G. and Jansen, G.: Arc direct reaction field methods appropriate for describing dispersion interactions?, Chem. Phys. Lett., 175 (1990), 313–318

    CAS  Google Scholar 

  8. Tomasi, J., Bonaccorsi, R., Cammi, R. and Olivares del Valle, F. J.: Theoretical chemistry in solution. Some results and perspectives of the continuum methods and in particular of the polarizable continuurn model, .J.Mol.Struct., 234 (1991), 401–424

    Google Scholar 

  9. Angyan, J.: Common theoretical framework for quantum chemical solvent effect theories, J.Math.Chem., 10 (1992), 93–137

    CAS  Google Scholar 

  10. Dillet, V., Rinaldi, D., Angyan, J. and Rivail, J.-L.: Reaction field factors for the multipole distribution in a cavity surrounded by a continuum, Chem.Phys.Lett., 202 (1993, 18–22

    Article  Google Scholar 

  11. Tomasi, J. (1994) Application of continuurn solvation models based on a Quantum Mechanical Hamiltonian., in Cramer, C. J. and Truhlar, D. G. (eds.), Structure and Reactivity in Aqueous Solution, American Chemical Society, Washington, pp. 10–23.

    Google Scholar 

  12. Tomasi, J. and Persico, M.: Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent, Chem.Rev., 94 (1994), 2027–2094

    Article  CAS  Google Scholar 

  13. Jansen, G., Angyan, J. and Colonna, F., First European Conference on computational chemistry., (1994)

    Google Scholar 

  14. Warshel, A. and Levitt, H.: Theoretical studies of enzymatic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme, J. Mol. Biol., 103 (1976), 227–249

    Article  CAS  Google Scholar 

  15. Devanlt, D.: Quantum mechanical tunnelling in biological systems, Quarterly Review of Biophysics, 13 (1980), 387–564

    Google Scholar 

  16. Bash, P. A., Field, M. J. and Karplus, M.: Free energy perturbation method for chemical reactions in the condensed phase: a dynamical approach based on a combined quantum and molecular mechanics potential, J.Am.Chem.Soc., 109 (1987), 8092–8096

    Article  CAS  Google Scholar 

  17. Warshel, A., Chu, Z. T. and Parson, W. W.: Dispersed polaron simulations of electron transfer in photosynthetic reaction centers, Science, 246 (1989), 112–116

    CAS  Google Scholar 

  18. Äqvist, J. and Warshel, A.: Free energy relationship in metalloenzyme-catalyzed reactions. Calculations of the effects of metal ion substitutions in staphylococcal nuclease, J.Am.Chem.Soc., 112 (1990), 2860–2868

    Google Scholar 

  19. Bolton, J. R. and Archer, M. D. (1991) Basic electron-transfer theory, in Bolton, J. R., Mataga, N. and McLendon, G. (eds.), Electron Transfer in Inorganic, Organic and Biological Systems, American Chemical Society, 7–23.

    Google Scholar 

  20. Bauschlicher, C. W. and Langhoff, S. R.: Quantum mechanical calculations to chemical accuracy, Science, 254 (1991), 394–398

    CAS  Google Scholar 

  21. Bowman, J. M.: Reduced dimensionality theory of quantum reactive scattering, J.Phys. Chem., 95 (1991), 4960–4968

    CAS  Google Scholar 

  22. Daggett, V., Schröder, S. and Kollman, P.: Catalytic pathways of serine proteases: classical and quantum mechanical calculations, J. Am. Chem. Soc., 113 (1991), 8926–8935

    Article  CAS  Google Scholar 

  23. Rivail, J. L., Loos, M. and Thery, V., Trends Ecol. Phys. Chem., Proc. Int. Workshop Ecol. Phys. Chem., 2nd (1992) 17–26

    Google Scholar 

  24. Zeng, J., Craw, J. S., Hush, N. S. and Reimers, J. R.: Medium effects on molecular and ionic electronic spectra. Application to the lowest 1(n,π*) state of dilute pyridine in water, Chem.Phys.Lett., 206 (1993), 323–328

    CAS  Google Scholar 

  25. Jorgensen, W. L., Blake, J. F., Lim, D. and Severance, D. L.: Investigation of solvent effects on pericyclic reactions by computer simulations, J.Chem.Soc., Faraday Trans., 90 (1994), 1727–1732

    Article  CAS  Google Scholar 

  26. Jortner, J., Levine, R. D. and Pullman, B. (ed.), The Jerusalem Symposia on Quantum Chemistry and Biochemistry, Kluwer Acad.Pub., Dordrecht, 1994.

    Google Scholar 

  27. Knops-Gerrits, P.-P., De Vos, D., Thibault-Starzyk, F. and Jacobs, P. A.: Zeolite-encapsulated Mn(II) complexes as catalysts for alkene oxidation, Nature, 369 (1994), 543–546

    Article  CAS  Google Scholar 

  28. Rasaiah, J. and Zhu, J. (1994) Solvent dynamics and electron transfer reactions, in Gauduel, Y. and Rossky, P. J. (eds.), Ultrafast reaction dynamics and solvent effects, AIP Press, New York, pp.421–434.

    Google Scholar 

  29. Storer, J. W., Giesen, D.J., Hawkins, G. D., Lynch, G. C., Cramer, C. J., Truhlar, D. G. and Liotard, D. A. (1994) Solvation modeling in aqueous and nonaqueous solvents., in Cramer, C. J. and Truhlar, D. G. (eds.), Structure and Reactivity in Aqueous Solution, American Chemical Society, Washington, pp.24–49.

    Google Scholar 

  30. Spears, K. G.: Models for electron transfer with vibrational state resolution, J.Phys. Chem., 99 (1995), 2469–2476

    Article  CAS  Google Scholar 

  31. Luzhkov, V. and Warshel, A.: Microscopic models for quantum mechanical calculations of chemical processes in solutions: LD/AMPAC and SCAAS/AMPAC calculations of solvation energies, J.Comp.Chem., 13 (1992), 199–213

    CAS  Google Scholar 

  32. Evans, M. G. and Polanyi, M.: Inertia and driving force of chemical reactions, Disc.Faraday Soc, (1938), 11–24

    Google Scholar 

  33. Wigner, E.: The transition state method, Trans.Faraday Soc., 34 (1938), 29–41

    CAS  Google Scholar 

  34. Glasstone, K. J., Laidler, K. J. and Eyring, H.: Theory of rate processes, McGraw-Hill, New York, 1941

    Google Scholar 

  35. Garret, B. C. and Truhlar, D. G.: Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J.Phys.Chem., 83 (1979), 1052–1079

    Google Scholar 

  36. Garret, B. C. and Truhlar, D. G.: Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules, J.Phys. Chem., 83 (1979), 1079–1112

    Google Scholar 

  37. Laidler, K. J. and King, M. C.: The development of transition-state theory, J. Phys. Chem., 87 (1983), 2657–2664

    Article  CAS  Google Scholar 

  38. Fong. F. K.: A successor to transition-state theory, Acc.Chem.Res., 9 (1976), 433–438

    Article  CAS  Google Scholar 

  39. Miller, W. H.: Beyond transition state theory: a rigorous quantum theory of chemical reaction rates, Acc. Chem. Res., 26 (1993), 174–181

    CAS  Google Scholar 

  40. Bolton, J. B., Mataga, N. and McLendon, G.: Advances in Chemistry Series CSC Symposium Series 2, 1991

    Google Scholar 

  41. Marcus, R. A.: Schrödinger equation for strongly interacting electron-transfer systems, J.Phys.Chem., 96 (1992), 1753–1757

    CAS  Google Scholar 

  42. Pauling, L.: Nature of forces between large molecules of biological interest, Nature, 161 (1948), 707–709

    CAS  Google Scholar 

  43. Tapia, O. and Andres, J.: On a quantum theory of chemical reactions and the role of in vacuum transition structures. Primary and secondary sources of enzyme catalysis, J.Mol.Str (THEOCHEM), 335 (1995), 267–286

    CAS  Google Scholar 

  44. Feynman, R. P.: Statistical mechanics, Benjamin,lnc., Reading, 1972

    Google Scholar 

  45. Feynman, R. P.: Quantum electrodynamics, Benjamin, Inc., New York, 1961

    Google Scholar 

  46. Craig, D. P. and Thirunamachandran, T.: Molecular quantum electrodynamics, Academic Press, London, 1984

    Google Scholar 

  47. Sakurai, J. J.: Modern Quantum Mechanics, Benjamin/Cummings, Menlo Park, 1985

    Google Scholar 

  48. McQuarrie, D. A.: Statistical mechanics, Harper & Row, New York, USA, 1976

    Google Scholar 

  49. Baer, M.: Adiabatic and diabatic representations for atom-molecule collisions: Treatment of the collinear arrangement, Chem.Phys.Lett., 35 (1975), 112–118

    Article  CAS  Google Scholar 

  50. Baer, M.: Adiabatic and diabatic representations for atom-diatom collisions: Treatment of the three-dimensional case, Chem.Phys., 15 (1976), 49–57

    Article  CAS  Google Scholar 

  51. Chapuisat, X., Nauts, A. and Dehareng-Dao, D.: Adiabatic-to-diabatic electronic state transformation and curvilinear nuclear coordinates for molecular systems, Chem.Phys.Lett., 95 (1983), 139–143

    Article  CAS  Google Scholar 

  52. Naray-Szabo, G., Surjan, P. R. and Angyan, J. G.: Applied Quantum Chemistry, Reidel, Dordrecht, 1987

    Google Scholar 

  53. Park, D.: Introduction to the quantum theory, MacGraw-Hill, New York, 1974

    Google Scholar 

  54. Cortes, E., West, B. J. and Lindenberg, K.: On the generalized Langevin equation: classical and quantum mechanical, J.Chem.Phys., 82 (1985), 2708–2717

    CAS  Google Scholar 

  55. Deumens, E., Diz, A., Longo, R. and Öhrn, I.: Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems, Rev.Mod.Phys., 66 (1994), 917–983

    Article  CAS  Google Scholar 

  56. Kroto, H. W.: Molecular rotation spectra, Dover Publications Inc., New York, 1992

    Google Scholar 

  57. Roos, B. J. (1992) The multiconfigurational (MC) self-consistent field (SCF) theory, in Roos, B. J.(eds.), Lecture notes in quantum chemistry, Springer-Verlag, Berlin, pp. 179–254.

    Google Scholar 

  58. Cohen-Tannoudji, C., Dupont-Roc, J. and Grynberg, G.: Processus d’interaction entre photons et atomes, InterEditions/Editions du CNRS, Paris, 1988

    Google Scholar 

  59. Park, D.: Classical dynamics and its quantum analogues, Springer-Verlag, Berlin, 1990

    Google Scholar 

  60. Gao, J. and Xia, X. (1994) Simulating solvent effects on reactivity and interactions in ambient and supercritical water, in Cramer, C. J. and Truhlar, D. G.(eds.), Structure and Reactivity in Aqueous Solution, American Chemical Society, Washington, pp.212–228.

    Google Scholar 

  61. Jansen, G., Colonna, F. and Angyan, J. G.: Mixed quantum-classical calculations on the water molecule in liquid phase: Influence of a polarizable environment on electronic properties, Int.J. Quantum Chem, in press (1995)

    Google Scholar 

  62. Carloni, P., Blöchl, P. E. and Parrinello, M.: Electronic structure of the Cu,Zn superoxide dismutase active site and its interactions with the substrate, J.Phys.Chem., 99 (1995), 1338–1348

    Article  CAS  Google Scholar 

  63. Eyring, H.: The activated complex in chemical reactions, J. Chem. Phys., 3 (1935), 107–115

    CAS  Google Scholar 

  64. Eliason, M. A. and Hirschfelder, J. O.:General collision theory for the rate of bimolecular, gas phase reactions, .J. Chem. Phys., 30 (1959), 1426.1436

    Google Scholar 

  65. Marcus, R. A.: Theoretical relations among rate constants, barriers, and Bronsted slopes of chemical reactions., J. Phys. Chem., 72 (1968), 891

    Article  CAS  Google Scholar 

  66. Laidler, K. J.: Theories of chemical reaction rates, McGraw-Hill, New York, 1969

    Google Scholar 

  67. Caldwell, D. and Eyring, H. (1971) Quantum-mechanical rate processes, in Yourgrau, W. and van der Merwe, A.(eds.), Perpectives in quantum theory, Dover Publications,Inc., New York, pp. 117–138.

    Google Scholar 

  68. Truhlar, D. G. and Garrett, B. C.: Variational transition-state theory, Acc. Chem. Res., 13 (1980), 440–448

    Article  CAS  Google Scholar 

  69. Cerjan, C. J. and Miller, W. H.: On finding transition states, J.Chem.Phys., 75 (1981), 2800–2806

    Article  CAS  Google Scholar 

  70. Pollak, E.: Theory of activated rate processes: a new derivation of Kramer’s expression, J. Chem.Phys., 85 (1986), 865–867

    Article  CAS  Google Scholar 

  71. Miller, W. H.: The theory of chemical reaction dynamics, Reidel, Dordrecht, Netherlands, 1986

    Google Scholar 

  72. Truhlar, D. G. and Steckler, R.: Potential energy surfaces for polyatomic reaction dynamics, Chem. Rev., 87 (1987), 217–236

    Article  CAS  Google Scholar 

  73. Hwang, J. K., Chu, Z. T., Yadav, A. and Warshel, A.: Simulations of quantum mechanical corrections for rate constants of hydride-transfer reactions in enzymes and solutions, J. Phys. Chem., 95 (1991), 8445–8448

    CAS  Google Scholar 

  74. Lobaugh, J. and Voth, G. A.: Calculation of quantum activation free energies for proton transfer reactions in polarsolvents, Chem. Phys. Lett., 198 (1992), 311–315

    Article  CAS  Google Scholar 

  75. Borgis, D. (1992) Proton transfer reactions in solutions: a molecular approach, in Electron Proton Transfer Chem.Biol., 345–362.

    Google Scholar 

  76. Marcus, R. A. and Siddarth, P.: Theory of electron transfer reactions and comparison with experiments, NATO ASI Ser., Ser. C, 376(Photoprocesses in Transition Metal Complexes, Biosystems and Other Molecules) (1992), 49–88

    CAS  Google Scholar 

  77. Tominaga, K., Kliner, D. A. V., Johnson, A. E., Levinger, N. E. and Barbara, P. E.: Femtosecond experiments and absolute rate calculations on intervalence electron transfer of mixed-valence compounds, J.Chem.Phys., 98 (1993), 1228–1243

    Article  CAS  Google Scholar 

  78. Borgis, D. and Hynes, J. T.: Dynamical theory of proton tunneling transfer rates in solution: general formulation, Chem. Phys., 170(1993), 315–346

    Article  CAS  Google Scholar 

  79. Basilevsky, M. V., Chudinov, G. E. and Napolov, D. V.: Calculation of the rate constant for the reaction chloride + chloromethane —τ C1CH3 + C1-in the framework of the continuum medium model, J. Phys Chem., 97 (1993), 3270–3277

    Article  CAS  Google Scholar 

  80. Miller, W. H.: Quantum mechanical theory of collisional recombination rates, J.Phys. Chem., 99 (1995), 12387–12390

    CAS  Google Scholar 

  81. Herring, C.: Critique of the Heitler-London method of calculating spin couplings at large distances, Rev.Mod.Phys., 34 (1962), 631–645

    Article  CAS  Google Scholar 

  82. Herring, C. and Flicker, M.: Asymptotic exchange coupling of two hydrogen atoms, Phys.Rev., 134 (1964), A362–A366

    Article  Google Scholar 

  83. Migdal, A. B. and Krainov, V. P.: Approximation methods in quantum mechanics, Benjamin,Inc., New York, 1969

    Google Scholar 

  84. Levine, R. D. and Bernstein, R. B.: Molecular reaction dynamics and chemical reactivity, Oxford University Press, New York, 1987

    Google Scholar 

  85. Shaik, S. S., Schlegel, H. B. and Wolfe, S.: Theoretical aspects of physical organic chemistry, Wiley, New York, 1992

    Google Scholar 

  86. Hase, W. L.: Simulation of gas-phase chemical reactions: Applications to SN2 nucleophilic substitution, Science, 266 (1994), 998–1002

    CAS  Google Scholar 

  87. Kearley, G. J., Fillaux, F., Baron, M.-H., Bennington, S. and Tomkinson, J.: A new look at proton dynamics along the hydrogen bonds in amides and peptides, Science, 264 (1994), 1285–1289

    CAS  Google Scholar 

  88. Mezey, P. G.: Catchment region partitioning of energy hypersurfaces,I., Theoret.chim.Acta(Berl.), 58 (1981), 390–330

    Google Scholar 

  89. Mezey, P. G.: Topology of energy hypersurfaces, Theoret.Chim.Acta (Berl.), 62 (1982), 133–161

    Article  CAS  Google Scholar 

  90. Schrödinger, E. (1983) The present situation in quantum mechanics: A translation of Schrödinger’s “Cat Paradox” paper,in Wheeler, J. A. and Zurek, W. H.(eds.), Quantum theory and measurement, Princeton University Press, Princeton, New Jersey, pp.152–167.

    Google Scholar 

  91. Zeilinger, A., Bernstein, H. J., Greenberger, D. M., Horne, M. A. and Zukowski, M. (1993) Controlling entanglement in quantum optics,in Esawa, H. and Murayama, Y.(eds.), Quantum control and measurement, Elsevier, Amsterdam, pp.9–22

    Google Scholar 

  92. Langbein, D.: Theory of van der-Waals attraction, Springer-Verlag, Berlin, 1974

    Google Scholar 

  93. Andres, J., Cárdenas, R., Silla, E. and Tapia, 0.: A theoretical study of the Meyer-Schuster reaction mechanism: minimum-energy profile and properties of transition-state structures, J. Am. Chem. Soc., 110 (1988), 666–672

    Article  CAS  Google Scholar 

  94. Tapia, O., Cardenas, R., Andres. J. and Colonna-Cesari, F.: Transition structure for hydride transfer to pyridinium cation from methanolate. Modeling of LADH catalyzed reaction, J. Am. Chem. Soc., 110 (1988), 4046–4047

    Article  CAS  Google Scholar 

  95. Tapia, O., Andres, J., Aullo, J. M. and Cardenas, R.: Electronic aspects of the hydride transfer mechanism. Part 2. Ab initio analytical gradient studies of the pyridinium cation/1,4-dihydropyridine, ciclopropenyl-cation/cyclopropene and formaldehyde/methanolate model reactant system, J. Mol. Struct. THEOCHEM., 167 (1988). 395–412

    Article  Google Scholar 

  96. Andres, J., Moliner, V. and Safont, V. S.: Theoretical kinetic isotope effects for the hydride-transfer step in Lactate Dehydrogenase, J. Chem. Soc. Faraday Trans., 90 (1994)

    Google Scholar 

  97. Andres, J., Safont, V. S., Martins, J. B. L., Beltran, A. and Moliner, V.: AMI and PM3 transition structure for the hydride transfer. A model of reaction catalyzed by dihydrofolate reductase, J. Mol.Struct. THEOCHEM, 330 (1995), 411–417

    CAS  Google Scholar 

  98. Cardenas, R., Andrés, J., Krechl, J., Campillo, M. and Tapia, O.: On a possible invariance of a transition structure to the effects produced by ancyllary H-bonding molecules: Modelling the effects of Ser-48 in the hydride transfer step of liver alcohol dehydrogenase, Int.J.Quantum Chem., in press (1995)

    Google Scholar 

  99. Yliniemela, A., Konschin, H., Neagu, C., Pajunen, A., Hase, T., Brunow, G. and Teleman, O.:Design and synsthesis of a transition state analog for the ene reaction between maleimide and 1-alkenes, J.Am.Chem.Soc., 117 (1995), 5120–5126

    Article  CAS  Google Scholar 

  100. Tapia, O., Jacob, O. and Colonna, F.: Transition structures for carbon dioxide and formaldehyde hydroxylation reactions in the coordinate sphere of zinc, Theor. Chim. Acta, 8.5 (1993), 217–230

    Google Scholar 

  101. Tapia, O., Andres, J. and Safont, V. S.: Theoretical study of transition structures for intramolecular hydrogen transfer in molecular models representing D-ribulose-1,s-bisphosphate. A possible molecular mechanism for the enolization step in Rubisco, J.Phys.Chem., 98 (1994), 4821–4830

    Article  CAS  Google Scholar 

  102. Tapia, O., Andres, J. and Safont, V. S.: Enzyme catalysis and transition structures in vacuo. Transition structures for the enolization, carboxylation and oxygenation reactions in ribulose-1,5-bisphosphate carboxylase/oxygenase enzyme (Rubisco), J. Chem.Soc.Faraday Trans., 90 (1994), 2365–2374

    Article  CAS  Google Scholar 

  103. Tapia, O. and Andres, J.: A simple protocol to help calculate saddle points. Transition state structures for the Meyer-Schuster reaction in non-aqueous media: an ab initio MO study., Chem. Phys. Letters, 109 (1984), 471–477

    CAS  Google Scholar 

  104. Bertran, J., Gallardo, I., Moreno, M. and Saveant, J. M.: Dissociative electron transfer. Ab initio study of the carbon-halogen bond reductive cleavage in methyl and perfluoromethyl halides. Role of the solvent, J.Am.Chem.Soc., 114 (1992), 9576–9583

    Article  CAS  Google Scholar 

  105. Wesolowski, T. A. and Warshel, A.: Frozen density functional approach for ab initio calculations of solvated molecules, J.Phys.Chem., 97 (1993), 8050–8053

    Article  CAS  Google Scholar 

  106. Honig, B. and Nicholls, A.: Classical electrostatics in biology and chemistry, Science, 268 (1995), 1144.1149

    Google Scholar 

  107. Angyan, J. G.: Rayleigh-Schrödinger perturbation theory of non-linear Schrödinger equations with linear perturbation, Int.J.Quantum Chem., 47 (1993), 469–483

    CAS  Google Scholar 

  108. Angyan, J. G.: Choosing between alternative MP2 algoritms in the selfconsistent reaction field (SCRF) theory of solvent effects, Chem.Phys.Lett., in press (1995)

    Google Scholar 

  109. Gao, J.: Combined QM/MM simulation study of the Claisen rearrangement of allyl vinyl ether in aqueous solution, J.Am.Chem.Soc., 116 (1994), 1563–1564

    CAS  Google Scholar 

  110. Pappalardo, R. R., Sanchez Marcos, E., Ruiz-Lopez, M. F., Rinaldi, D. and Rivail, J. L.: Solvent effects on molecular geometries and isomerization processes: A study of push-pull ethylenes in solution, J.Am.Chem.Soc., 115 (1993), 3722–3730

    Article  CAS  Google Scholar 

  111. Sánchez Marcos, E., Pappalardo, R. R. and Rinaldi, D.: Effects of the solvent reaction field on the geometrical structures of hexahydrate metallic cations, J.Phys. Chem., 95 (1991), 8928–8932

    Article  Google Scholar 

  112. Maran, U., Pakkanen, T. A. and Karelson, M.: A semiempirical study of the solvent effect on the Menshutkin reaction, J.Chem.Soc.Perkin II, submitted (1995).

    Google Scholar 

  113. Karelson, M. M. and Zerner, M. C.: Theoretical treatment of solvent effects on electronic spectroscopy, J.Phys. Chem., 96 (1992), 6949–6957

    Article  CAS  Google Scholar 

  114. Karelson, M., Tamm, T. and Zerner, M. C.: Multicavity reaction field method for the solvent effect description in flexible molecular systems, J.Phys.Chem., 97 (1993), 11901–11907

    Article  CAS  Google Scholar 

  115. Zhao, X. G. and Cuckier, R. I.: Molecular dynamics and quantum chemistry study of a proton-coupled electron transfer reaction, J.Phys. Chem., 99 (1995), 945–954

    CAS  Google Scholar 

  116. Glossman, M. D., Balbás, L. C., Rubio, A. and Alonso, J. A.: Nonlocal exchange and kinetic energy density functionals with correct asymptotic behavior for electronic systems, Int.J. Quantum Chem., 49 (1994), 171–184

    Article  CAS  Google Scholar 

  117. Bersuker, I. B.: On the limitations of the density functional theory in electronic structure calculations, Int.J. Quantum Chem., submitted (1995)

    Google Scholar 

  118. Soirat, A., Flocco, M. and Massa, L.: Approximately N-representable density functionals density matrices, Int.J.Quantum Chem., 49 (1994), 291–298

    Article  CAS  Google Scholar 

  119. Marx, D. and Parrinello, M.: Structural quantum effects and three-centre two-electron bonding in CH5+, Nature, 375 (1995), 216–218

    Article  CAS  Google Scholar 

  120. Tuckerman, M., Laasonen, K., Sprik, M. and Parrinello, M.: Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH-ions in water, J.Phys.Chem., 99 (1995), 5749–5752

    Article  CAS  Google Scholar 

  121. Tuckerman, M., Laasonen, K., Sprik, M. and Parrinello, M.: Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water, J.Chem.Phys., 103 (1995), 150–161

    Article  CAS  Google Scholar 

  122. Porezag, D. and Pederson, M. R.: Density functional based studies of transition states and barriers for hydrogen exchange and abstraction reactions, J. Chem.Phys., 102 (1993, 9345–9349

    Google Scholar 

  123. Tapia, O., Colonna, F. and Angyan, J. G.: Generalized self-consistent reaction field theory in multicenter-multipole ab initio LCGO framework. I. Electronic properties of the water molecule in a Monte Carlo sample of liquid water molecules studied with standard basis sets, J.Chim.Phys., (1990), 875–903

    Google Scholar 

  124. Warshel, A.: Computer simulations of enzymatic reactions, Curr. Op. in Struct. Biol, 2 (1992), 230–236

    CAS  Google Scholar 

  125. Merz Jr., K. M.: Computer simulation of enzymatic reactions, Curr Op. in Struct. Biol., 3 (1993), 234–240

    CAS  Google Scholar 

  126. Gao, J.: Monte Carlo quantum mechanical-configutration interaction and molecular mechanics simulations of solvent effects on the n-→π* blue shift in acetone, J.Am.Chem.Soc., 116 (1994), 9324–9328

    CAS  Google Scholar 

  127. Kubo, R.: The fluctuation-dissipation theorem, Benjamin, Inc., New York, 1969

    Google Scholar 

  128. Wax, N.(ed.), Dover Publications, Inc., New York, 1954.

    Google Scholar 

  129. Adelman, S. A.: Generalized Langevin equations and many-body problems in chemical physics, Adv.Chem.Phys., 44 (1980), 143–253

    CAS  Google Scholar 

  130. Risken, H.: The Fokker-Planck equation, Springer-Verlag, Berlin, 1989

    Google Scholar 

  131. Evans, M. W., Evans, G. T., Coffey, W. T. and Grigolini, P.: Molecular dynamics and theory of broad band spectroscopy, John Wiley & Sons, New York, 1982

    Google Scholar 

  132. Straat, R. M.: The instantaneous normal modes of liquids, Acc.Chem.Res., 28 (1995), 201–207

    Google Scholar 

  133. Lindenberg, K. and West, B. J.: Statistical properties of quantum systems: The linear oscillator, Phys.Rev.A, 30 (1984), 568–582

    Article  Google Scholar 

  134. Kittel, C.: Introduction to solid state physics, Wiley & Sons, Inc., New York, 1976

    Google Scholar 

  135. Skinner, J. L. and Trommsdorf, H. P.: Proton transfer in benzoic acid crystals: A chemical spin-boson problem. Theoretical analysis of nuclear magnetic resonance, neutron scattering, and optical experiments, J.Chem.Phys., 89 (1988), 897–907

    Article  CAS  Google Scholar 

  136. Blaizot, J.-P. and Ripka, G.: Quantum theory of finite systems, The MIT Press, Cambridge, Massachusetts, 1986

    Google Scholar 

  137. Zwanzig, R. W. (1961) Statistical mechanics of irreversibility, in Brittin, W. E., Downs, B. W. and Downs, J.(eds.), Lectures in theoretical physics, Interscience Pub.Inc., New York, pp. 106–141.

    Google Scholar 

  138. West, B. J. and Lindenberg, K.: Energy transfer in condensed media. 1. Two-level systems, J.Chem.Phys., 83 (198S), 4118–4135

    Google Scholar 

  139. Christov, S. G.: Two types of Kramers rate equations for reactions in condensed media, Int.J.Quantum Chem., 52 (1994), 1219–1228

    Article  CAS  Google Scholar 

  140. Pollak. E.: Quantuin theory of activated rate processes: a maximum free energy approach, J.Chem.Phys., 103 (1995), 973–980

    Article  CAS  Google Scholar 

  141. Brown, D. W., Lindenberg, K. and West, B. J.: Energy transfer in condensed media. II. Comparison of stochastic Liouville equations, J.Chem.Phys., 83 (1985), 4136–4143

    CAS  Google Scholar 

  142. Brown, D. W., Lindenberg, K. and West, B. J.: On the dynamics of polaron formation in a deformable medium, J.Chem.Phys., 84 (1986), 1574–1582

    CAS  Google Scholar 

  143. Leggett, A. J., Chakravarty, S., Dorsey, A. T., Fisher, M. P., Garg, A. and Zwerger, W.: Dynamics of the dissipative two-state system, Rev.Mod.Phys., 59 (1987), 1–85

    Article  CAS  Google Scholar 

  144. Smith, B. B., Staib, A. and Hynes, J. T.: Well and barrier dynamics and electron transfer rates. A molecular dynamics study, Chem.Phys., 176 (1993), 521–537

    Article  CAS  Google Scholar 

  145. Smith, B. B. and Hynes, J. T.: Electron friction and electron transfer rates at metallic electrodes, J.Chem.Phys., 99 (1993), 6517–6530

    CAS  Google Scholar 

  146. Zewail, H. A.: FEMTOCHEMISTRY. Ultrafast dynamics of the chemical bond, World Scientific, Singapore, 1994

    Google Scholar 

  147. Jimenez, R., Fleming, G. R., Kumar, P. V. and Maroncelli, M.: Femtosecond solvation dynamics of water, Nature, 369 (1994), 471–473

    Article  CAS  Google Scholar 

  148. Richter, W., Lee, S., Warren, W. S. and He, Q.: Imaging with intermolecular multiple-quantum coherences in solution nuclear magnetic resonance, Science, 267 (1995), 654–657

    CAS  Google Scholar 

  149. He, Q., Richter, W., Vathyam, S. and Warren, W. S.: Intermolecular multiple-quantum coherences and cross correlations in solution nuclear magnetic resonance, J.Chem.Phys., 98 (1993), 6779–6800

    Article  CAS  Google Scholar 

  150. Skrebkov, O. V.: Diffusional description of vibrational realaxation in a binary mixture of diatomic molecules-quantum oscillators, Chem.Phys., 191 (1995), 87–99

    Article  CAS  Google Scholar 

  151. Åberg, U., Åkesson, E., Alvarez, J.-L., Fedchenia, I. and Sundström, V.: Femtosecond spectral evolution monitoring the bond-twisting event in barrierless isomerization in solution, Chem.Phys., 183 (1994), 269–288

    Google Scholar 

  152. Dirac, P. A. M.: The principles of quantum mechanics, Clarendon Press, Oxford, 1947

    Google Scholar 

  153. Loudon, R.: The quantum theory of light, Clarendon Press, Oxford, 1986

    Google Scholar 

  154. Ballentine, L. E.: Quantum mechanics, Prentice Hall, Englewood Cliffs, 1990

    Google Scholar 

  155. Mannervik, B. (1981) Design and analysis of kinetic experiment for discrimination between rival models, in Endrenyi, L.(eds.), Kinetic data analysis, Plenum Pub.Co., New York, pp.

    Google Scholar 

  156. Tapia, O., Poulain, E. and Sussman, F.: Hydrogen Bond. Environmental effects on proton potential curves. An SCRF MO CNDO/2 calculation of a water dimer, Chem.Phys.Lett., 33 (1975), 65–70

    Article  CAS  Google Scholar 

  157. Hemley, R. J., Soos, Z. G., Hanfland, M. and Mao, H.-k.: Charge-transfer states in dense hydrogen, Nature, 369 (1994), 384–387

    Article  CAS  Google Scholar 

  158. Basché, T., Kummer, S. and Bräuchle, C.: Direct spectroscopic observation of quantum jumps of a single molecule, Nature, 373 (1995), 132–134

    Google Scholar 

  159. Pechukas, P.: Time-dependent semiclassical scattering theory. I. Potential scattering, Phys.Rev., 181 (1969), 166–174

    Google Scholar 

  160. Pechukas, P.: Time-dependent semiclassical scattering theory. II. Atomic collisions, Phys.Rev., 181 (1969), 174–185

    CAS  Google Scholar 

  161. Basilevsky, M. V. and Ryaboy, V. M.: Two approaches to the calculation of molecular resonance states: Solution of scattering equations and matrix diagonalization, J.Comp.Chem., 8 (1987), 683–699

    Google Scholar 

  162. Lefebvre, R. and Moiseyev, N.: Artificial resonance procedure for the determination of quantum mechanical rate constants in the tunneling regime, J. Chem. Phys., 93 (1990), 7173–7178

    Article  CAS  Google Scholar 

  163. Clary, D. C.: Quantum scattering calculations on the OH + H2 (v =0.1), OH + D2, and OD + H2 reactions, J. Chem. Phys., 96 (1992), 3656–3665

    CAS  Google Scholar 

  164. Ryaboy, V. and Lefebvre, R.: Flux-flux correlation function study of resonance effects in reactive collision, J. Chem. Phys., 99 (1993), 9547–9552

    CAS  Google Scholar 

  165. Lefebvre, R., Ryaboy, V. and Moiseyev, N.: Resonance and reaction, J. Mol. Struct. (THEOCHEM), 332 (1995), 209–215

    Article  CAS  Google Scholar 

  166. Davis, M. J.: Bottlenecks to intramolecular energy transfer and the calculation of relaxation rates, J. Chem. Phys., 83 (1985), 1016–1031

    Article  CAS  Google Scholar 

  167. Williams, I. H. and Maggiora, G. M.: Use and abuse of the distinguished-coordinate method for transition-state structure searching, J. Mol. Struct. (THEOCHEM), 89 (1982), 365–378

    Article  Google Scholar 

  168. DePuy, C. H., Gronert, S., Mullin, A. and Bierbaum, V. M.: Gas-phase SN2 and E2 reactions of alkyl halides, J.Am.Chem.Soc., 112 (1990), 8650–8655

    Article  CAS  Google Scholar 

  169. Borman, S.:New insight gained on gas-phase SN2 reaction, Chem.Eng.News, (1992), 22–26

    Google Scholar 

  170. Cyr, D. M., Scarton, M. G. and Johnson, M. A.: Photoelectron spectroscopy of the gas-phase SN2 reaction intermediates I.CH3I and I-.CD3I: Distorsion of the CH3I at the “ion-dipole” complex, J.Chem.Phys., 99 (1993), 4869–4872

    CAS  Google Scholar 

  171. Wladkowski, B. D., Allen, W. D. and Brauman, J. I.: The SN2 identity reaction F-+CH3F-→ FCH3 + F-, J.Phys.Chem., 98 (1995), 13532–13540

    Google Scholar 

  172. Tapia, O., Paulino, M. and Stamato, F. M. L. G.: Computer assisted simulations and molecular graphics methods in molecular design. 1.Theory and applications to enzyme active-site directed drug design, Mol.Eng., 3 (1994), 377–414

    Article  CAS  Google Scholar 

  173. Tapia, O. and Andres, J.: Towards an explanation of carboxylation/oxygenation bifuinctionality in Rubisco. Transition structure for the carboxylation reaction of 2,3,4-pentanetriol., Mol. Eng., 2 (1992), 37–41

    Article  CAS  Google Scholar 

  174. Tapia, O., Andres, J. and Cardenas, R.: Transition structure for the hydride transfer reaction from formate anion to cyclopropenyl cation: a simple theoretical model for the reaction catalyzed by formate dehydrogenase, Chem. Phys. Lett, 189 (1992), 395–400

    Article  CAS  Google Scholar 

  175. Mezey, P. G. (1981) Optimization and analysis of energy hypersurfaces,in Csizmadia, I. G. and Daudel, R.(eds.), Computational theoretical organic chemistry, 101–128.

    Google Scholar 

  176. Hu, W.-P. and Truhlar, D. G.: Structural distorsion of CH3I in an ion-dipole precursor complex, J.Phys.Chem., 98 (1994), 1049–1052

    CAS  Google Scholar 

  177. Zewail, A. H.: FEMTOCHEMISTRY. Ultrafast dynamics of the chemical bond, World Scientific, Singapore, 1994

    Google Scholar 

  178. Zare, R. N.: Reactions a l a mode, Nuture, 365 (1993), 105–106

    Google Scholar 

  179. Guettler, R. D., Jones Jr., G. C., Posey, L. A. and Zare, R. N.: Partial control of an ion-molecule reaction by selection of internal motion of the polyatomic reagent ion, Science, 266 (1994), 259–261

    CAS  Google Scholar 

  180. Gericke, K.-H.: Control of ion-molecule reactions in the gas phase, Angew.Chem.lnt.Ed.Engl., 34 (1995), 885–886

    CAS  Google Scholar 

  181. Tapia, O., Cardenas, R., Andres, J., Krechl, J., Campillo, M. and Colonna-Cesari, F.: Electronic aspects of LADH catalytic mechanism, Int. J. Quantum. Chem., 39 (1991), 767–786

    Article  CAS  Google Scholar 

  182. Andres, J., Safont, V. S., Queralt, J. and Tapia, O: A theoretical study of the singlet-triplet energy gap dependence upon rotation and pyramidalization for 1,2-dihydroxyethylene. A simple model to study the enediol moiety in rubisco’s substrate., J. Phys. Chem., 97 (1993), 7888–7893

    Article  CAS  Google Scholar 

  183. Andres, J., Moliner, V., Krechl, J. and Silla, E.: Comparison of several semiempirical and ab initio methods for transition state structure characterization. Addition of CO2 to CH3NHCONH2, J. Phys. Chem., 98 (1994), 3664–3668

    CAS  Google Scholar 

  184. Andres, J., Moliner, V., Krechl, J., Domingo, J. L. and Picher, M. T.: A theoretical study of the molecular mechanism for the methanol oxidation by PQQ, J. Am. Chem. Soc., 117 (1995), 8807–8815

    Article  CAS  Google Scholar 

  185. Pritchard, H. O.: The quantum theory of unimolecular reactions, Cambridge University Press, Cambridge, 1984

    Google Scholar 

  186. Zhao, M. and Rice, S. A.: Resonance state approach to quantum transition state theory, J. Phys. Chem., 98 (1994), 3444–2449

    CAS  Google Scholar 

  187. Truhlar, D. G. and Garrett, B. C.: Resonance state approach to quantum mechanical variational transition state theory, J. Phys. Chem., 96 (1992), 6515–6518

    Article  CAS  Google Scholar 

  188. Graul, S. T. and Bowers, M. T.: The nonstatical dissociation dynamics of Cl-(CH3Br): evidence for vibrational excitation in the products of gas-phase SN2 reactions, J. Am. Chem. Soc., 113 (1991). 9696–9697

    Article  CAS  Google Scholar 

  189. Viggiano, A. A., Morris, R. A., Paschkewitz, J. S. and Paulson, J. F.: Kinetics of the gas-phase reactions of CI-with CH3Br and CD3Br: experimental evidence for nonstatistical behavior, J.Am. Chem.Soc., 114 (1992), 10477–10482

    CAS  Google Scholar 

  190. Graul, S. T. and Bowers, M. T.: Vibrational excitation in products of nucleophilic substitution: the dissociation of metastable X-(CH3Y) in the gas phase, J.Am.Chem.Soc, 116 (1994), 3875–3883

    Article  CAS  Google Scholar 

  191. Vande Linde, S. R. and Hase, W. L.: Trajectory studies of SN2 nucleophilic substitution. I. Dynamics of CI + CH3C1 reactive collisions, J.Chem.Phys., 93 (1990)

    Google Scholar 

  192. Cho, Y. J., Vande Linde, S. R., Zhu, L. and Hase, W. L.: Trajectory studies of SN2 nucleophilic substitution. II. Nonstatistical central barrier recrossing in the CI-+ CH3C1 system, J. Chem.Phys., 96 (1992), 8275–8287

    CAS  Google Scholar 

  193. Viggiano, A. A., Morris, R. A., Su, T., Wladkowski, B. D., Craig, S. L., Zhong, M. and Brauman, J. I.: The SN2 identity exchange reaction 37C1-+ 35CICH2CN-→ 35C1 + 37CICH2CN: Kinetic energy and temperature dependence, J.Am.Chem.Soc., 116 (1994), 2213–2214

    Article  CAS  Google Scholar 

  194. Morris, R. A. and Viggiano, A. A.: Kinetics of the reactions of F-with CF3Br and CF31 as a function of temperature, kinetic energy, internal temperature, and pressure, J.Phys. Chem., 98 (1994), 3740–3746

    CAS  Google Scholar 

  195. Breen, J. J., Peng, L. W., Willberg, D. M., Heikal, A., Cong, P. and Zewail, A. H.: Real-time probing of reactions,in clusters, J.Chem.Phys., 92 (I990), 805–807

    Google Scholar 

  196. Leggett, A. J.: Quantum tunneling in the presence of an arbitrary linear dissipation mechanism, Phys. Rev.B, 30 (1984), 1208–1218

    Article  Google Scholar 

  197. Makri, N. and Miller, W. H.: Basis method for describing the quantum mechanics of a "system" interacting with a harmonic bath, J. Chem. Phys., 86 (1987), 1451–1457

    Article  CAS  Google Scholar 

  198. Kim, H. J. and Hynes, J. T.: Equilibrium and nonequilibrium solvation and solute electronic structure, Int.J.Quantum Chem., 24 (1990), 821–833

    CAS  Google Scholar 

  199. Kim, H. J. and Hynes, J. T.: A theoretical model for SN1 ionic dissociation in solution. 1. Activation free energy and transition-state structure, J.Am.Chem.Soc., 114 (1992), 10508–10528

    CAS  Google Scholar 

  200. Kim, H. J. and Hynes, J. T.: A theoretical model for SNI ionic dissociation in solution. 2. Nonequilibriurn solvation reaction path and reaction rate, J.Am.Chem.Soc., 114 (1992), 10528–10537

    CAS  Google Scholar 

  201. Tapia, O. and Lluch, J. M.: Solvent effects on chemical reaction profiles.I. Monte Carlo simulation of hydration effects on quantum chemically calculated stationary structures, J. Chem.Phys., 83 (1983, 3970–3982

    Google Scholar 

  202. Tapia, O., Lluch, J. M., Cardenas, R. and Andres, J.: Theoretical study of solvation effects in chemical reactions. A combined quantum chemical/Monte Carlo study of the Meyer-Schuster reaction mechanism in water, J. Am. Chem. Soc., 111 (1989), 829–835

    Article  CAS  Google Scholar 

  203. Gouverneur, V. E., Houk, K. N., Pascual-Teresa, B., Beno, B., Janda, K. D. and Lerner, R. A.: Control of the exo and endo pathways of the Diels-Alder reaction by antibody catalysis, Science, 262 (1993), 204–208

    CAS  Google Scholar 

  204. Fersht, A.: Enzyme structure and mechanism, W.H.Freeman &Co., New York, 1985

    Google Scholar 

  205. Levy, M. and Perdew, J. P.: Success of quantum mechanical approximations for molecular geometries and electron-nuclear attraction expectation values: gift of the Coulomb potential ?, J. Chem. Phys., 84 (1986), 4519–4523

    Article  CAS  Google Scholar 

  206. Sitnitsky, A. E.: Fluctuations of electric fields in enzyme active sites as an efficient source of reaction activation, Chem.Phys.Lett., 240 (1995), 47–52

    Article  CAS  Google Scholar 

  207. Mathews, C. K. and van Holde, K. E.: Biochemistry, Benjamin/Cummings, Redwood City, 1990

    Google Scholar 

  208. Coates, G. W. and Waymouth, R. M.: Oscillating stereocontrol: A strategy for the synthesis of thermoplastic elastomeric propylene, Science, 267 (1993, 217–219

    Google Scholar 

  209. Hill, C. L. and Zhang, X.: A’ smart’ catalyst that self-assembles under turnover conditions, Nature, 373 (1995), 324–326

    Article  CAS  Google Scholar 

  210. Shabat, D., Itzhaky, H., Reymond, J.-L. and Keinan, E.: Antibody catalysis of a reaction otherwise strongly disfavoured in water, Nature, 374 (1995), 143–146

    Article  CAS  Google Scholar 

  211. Danishefsky, S.: Catalytic antibodies and disfavored reactions, Science, 259 (1993), 469–470

    CAS  Google Scholar 

  212. Li, T. L., Janda, K. D., Ashley, J. A. and Lerner, R. A.: Antibody catalyzed cationic cyclization, Science, 264 (1994), 1289–1293

    CAS  Google Scholar 

  213. Chandrasekhar, J., Smith, S. F. and Jorgensen, W. L.: SN2 reaction profiles in the gas phase and aqueous solution, J.Am.Chem.Soc., 106 (1984), 3049–3050

    CAS  Google Scholar 

  214. Chandrasekhar, J., Smith, S. F. and Jorgensen, W. L.: Theoretical examination of the SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solution, J. Am. Chem. Soc., 107 (1985), 154–163

    CAS  Google Scholar 

  215. Huston, S. E., Rossky, P. J. and Zichi, D. A.: Hydration effects on SN2 reaction: An integral equation study of free energy surface and corrections to transitiion-state theory, J.Am.Chem.Soc., 111 (1989), 5680–5687

    CAS  Google Scholar 

  216. Balbuena, P. B., Johnston, K. P. and Rossky, P. J.: Computer simulation of an SN2 reaction in supercritical water, J.Phys.Chem., 99 (1993, 1554–1565

    Google Scholar 

  217. Miertus, S., Scrocco, E. and Tomasi, J.: Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects., Chem. Phys., 55 (1981), 117–129

    Article  CAS  Google Scholar 

  218. Tunon, I., Silla, E. and Pascual-Ahuir, J. L.: Theoretical study of the inversion of the alcohol acidity scale in aqueous solution. Toward an interpretation of the acid-base behavior of organic compunds in solution, J. Am. Chem. Soc., 115 (1993), 2226–2230

    Article  CAS  Google Scholar 

  219. Tortonda, F. R., Pascual-Ahuir, J. L., Silla, E. and Tunon, I.: Solvent effects on the thermodynamics and kinetics of the proton transfer between hydronium ions and ammonia. A Theoretical study using the continuum and the discrete models, J. Phys. Chem., 99 (1995), 12525–12531

    Article  CAS  Google Scholar 

  220. Mikkelsen, K. V., Joergensen, P. and Aagard-Jensen, H. J.: A multiconfiguration self-consistent reaction field response method, J. Chem.Phys., 100 (1994), 6597–6607

    CAS  Google Scholar 

  221. Mikkelsen, K., Luo, Y., Ågren, H. and Joergensen, P.: Solvent induced polarizabilities and hyperpolarizabilities of para-nitroaniline studied by reaction field linear response theory, J.Chem.Phys., 100 (1994), 8240–8250

    CAS  Google Scholar 

  222. Aguilar, M. A., Olivares del Valle, F. J. and Tomasi, J.: Nonequilibrium solvation: an ab initio quantum-mechanical method in the continuum cavity model approximation, J.Chem.Phys., 98 (1993), 7375–7384

    Article  CAS  Google Scholar 

  223. Aguilar, M., Bianco, R., Miertus, S., Persico, M. and Tomasi, J.: Chemical reactions in solution: modeling of the delay of solvent synchronism (dielectric friction) along the reaction path of an SN2 reaction, Chem. Phys., 174 (1993), 397–407

    Article  CAS  Google Scholar 

  224. Diercksen, G. H. F., Karelson, M., Tamm, T. and Zerner, M. C.: Multicavity SCRF calculation of ion hydration energies, Int.J. QuantumChem.:Quantum Chem.Symp., 28 (1994), 339–348

    CAS  Google Scholar 

  225. Liu, Y.-P. and Newton, M. D.: Solvent reorganization and donor/acceptor coupling in electron-transfer processes: self-consistent reaction field theory and ab initio applications, J.Phys. Chem., 99 (1995), 12382–12386

    CAS  Google Scholar 

  226. Truong, T. N. and Stefanovich, E. V.: A new method for incorporating solvent effect into the classical ab initio molecular orbital and density functional theory frameworks for arbitrary shape cavity, Chem.Phys.Lett., 240 (1995), 253–260

    Article  CAS  Google Scholar 

  227. de Souza, L. E. S. and Ben-Amotz, D.: Solvent mean force perturbations of diatomic dissociation reactions. Comparison of perturbed hard fluid and computer simulation results, J. Chem. Phys., 101 (1994), 4117–4122

    Google Scholar 

  228. de Souza, L. E. S. and Ben-Amotz, D.: Hard fluid model for molecular solvation free energies, J.Chem.Phys., 101 (1994), 9858–9863

    Google Scholar 

  229. Vaidehi, N., Wesolowski, T. A. and Warshel, A. J.: Quantum-mechanical calculations of solvation free energies. A combined ab initio pesudopotential free-energy perturbation approach, J.Chem.Phys., 97 (1992), 4264–4271

    Article  CAS  Google Scholar 

  230. Chen, J. L., Noodleman, L., Case, D. A. and Bashford, D.: Incorporating solvation effects into density functional electronic structure calculations, J. Phys. Chem., 98 (1994), 11059–11068

    CAS  Google Scholar 

  231. Wei, D. and Salahub, D. R.: Hydrated proton clusters and solvent effects on the proton transfer barrier: a density functional study, J. Chem. Phys., 101 (1994), 7633–7642

    CAS  Google Scholar 

  232. Cramer, C. J. and Truhlar, D. G.: General parametrized SCF model for free energies of solvation in aqueous solution, J. Am. Chem. Soc., 113 (1991), 8305–8311

    CAS  Google Scholar 

  233. Giesen, D. J., Storer, J., Cramer, C. J. and Truhlar, D. J.: General semiempirical quantum mechanical solvation model for nonpolar solvation free energies. n-hexadacane., J.Am. Chem.Soc., 117 (1995), 1057–1068

    Article  CAS  Google Scholar 

  234. Tannor, D. J., Marten, B., Murphy, R., Friesner, R. A., Sitkoff, D., Nicholls, A., Honig, B., Ringnalda, M. and Goddard, W. A., III: Accurate first principles calculation of molecular charge distributions and solvation energies from ab initio Quantum Mechanics and continuum dielectric theory., J. Am. Chem. Soc., 116 (1994), 11875–11882

    Article  CAS  Google Scholar 

  235. Orozco, M., Luque, F. J., Habibollahzadeh, D. and Gao, J.: The polarization contribution to the free energy of hydration, J.Chem.Phys., 102 (1995), 6145–6152

    Article  CAS  Google Scholar 

  236. Stouten, P. W., Froemmel, C., Nakamura, H. and Sander, C.: An effective solvation term based on atomic occupancies for use in protein simulations, Mol. Simul., 10 (1993), 97–120

    CAS  Google Scholar 

  237. Fraga, S. and Thornton, S. E.: Theoretical studies of peptidic structures. Environmental effects, Theor. Chim. Acta, 85 (1993), 61–67

    Article  CAS  Google Scholar 

  238. Collura, V. P., Greaney, P. J. and Robson, B.: A method for rapidly assessing and refining simple solvent treatments in molecular modeling. ExampIe studies on the antigen-combining loop H2 from FAB fragment McPC603, Protein Eng., 7 (1994), 221–233

    Article  CAS  Google Scholar 

  239. Guba, W. and Kessler, H.: A novel computational mimetic of biological membranes in molecular dynamics simulations, J.Phys.Chem., 98 (1994). 23–27

    Article  CAS  Google Scholar 

  240. Cifra, P. and Bleha, T.: Conformer populations and the excluded volume effect in lattice simulations of flexible chains in solutions, Polymer, 34 (1993). 3716–3722

    CAS  Google Scholar 

  241. Hartsough, D. S. and Merz Jr., K. M.: Potential of mean force calculations on the SN1 fragmentation of tert-butyl chloride, J.Phys. Chem., 99 (1995), 384–390

    CAS  Google Scholar 

  242. Lecea, B., Arrieta, A., Roa, G., Ugalde, J. M. and Cossio, F. P.: Catalytic and solvent effects on the cycloaddition reaction between ketenes and carbonyl compounds to form 2-oxetanones, J.Am. Chem.Soc., 116 (1994), 9613–9619

    Article  CAS  Google Scholar 

  243. Pardo, L., Osman, R., Weinstein, H. and Rabinowitz, J. R.: Mechanisms of nucleophiIic addition to activated double bonds: 1,2-and 1,4-Michael addition of ammonia, J.Am.Chem.Soc., 115 (1993), 8263–8269

    Article  CAS  Google Scholar 

  244. Davidson, M. M., Hillier, I. H., Hall, R. J. and Burton, N. A.: Effect of solvent on the Claisen rearrangement of allyl vinyl ether using ab initio continuum methods, J.Am.Chem.Soc., 116 (1994), 9294–9297

    Article  CAS  Google Scholar 

  245. Lim, D., Hrovat, D. A., Borden, W. T. and Jorgensen, W. L.: Solvent effects on the ring opening of cyclopropanones to oxyallyls: a combined ab initio and Monte Carlo study, J.Am.Chem.Soc., 116 (1994), 3494–3499

    Article  CAS  Google Scholar 

  246. Reguero, M., Pappalardo, R. R., Robb, M. A. and Rzepa, H. S.: An MCSCF study of the effect of substituents and solvent on the [2 + 2] cycloaddition of tert-butylcyanoketene to phenylethene, J.Chem.Soc., Perkin Trans. 2, (1993), 1499–1502

    Google Scholar 

  247. Dejaegere, A., Liang, X. and Karplus, M.: Phosphate ester hydrolysis: calculation of gas-phase reaction paths and solvation effects, J.Chem.Soc., Faraday Trans., 90 (1994), 1763–1770

    Article  CAS  Google Scholar 

  248. Balbuena, P. B., Johnston, K. P. and Rossky, P. J.: Molecular simulation of a chemical reaction in supercritical water, J.Am.Chem.Soc., 116 (1994), 2689–2690

    Article  CAS  Google Scholar 

  249. Gupta, R. B., Combes, J. R. and Johnston, K. P.: Solvent effect on hydrogen bonding in supercritical fluids, J.Phys. Chem., 97. (1993), 707–715

    Google Scholar 

  250. Jessop, P. G., Ikariya, T. and Noyori, R.: Homogenous catalysis in supercritical fluids, Science, 269 (1995), 1065–1069

    CAS  Google Scholar 

  251. Keszei, E., Murphrey, T. H. and Rossky, P. J.: Electron hydration dynamics: simulation results compared to pump and probe experiments, J.Phys.Chem., 99 (1995), 22–28

    Article  CAS  Google Scholar 

  252. Schwartz, B. J. and Rossky, P. J.: Aqueous solvation dynamics with a quantum mechanical solute: computer simulation studies of the photoexcited hydrated electron, J.Chem.Phys., 101 (1994), 6902–6916

    Google Scholar 

  253. Schwartz, B. J. and Rossky, P. J.: Pump-probe spectroscopy of the hydrated electron: a quantum molecular dynamics simulation, J. Chem. Phys., 101 (1994), 6917–6926

    Google Scholar 

  254. Schultz, K. E., Russel, D. H. and Harris, C. B.: The applicability of binary collision theories to complex molecules in simple liquids, J.Chem.Phys., 97 (1992), 5431–5438

    CAS  Google Scholar 

  255. Cho, M. and Fleming, G. R.: Photon-echo measurements in liquids: numerical calculations with model systems, J. Chem. Phys., 98 (1993), 2848–2859

    CAS  Google Scholar 

  256. Torrie, G. M. and Patey, G. N.: Molecular solvent model for an electrical double layer: asymmetric solvent effects, J.Phys.Chem., 97 (1993). 12909–12918

    Article  CAS  Google Scholar 

  257. Zhang, L., Davis, H. T. and White, H. S.: Simulations of solvent effects on confined electrolytes, J.Chem.Phys., 98 (1993), 5793–5799

    CAS  Google Scholar 

  258. Scherer, P. L. J. and Fischer, S. F.: Theoretical analysis of the photoinduced electron transfer in porphyrin-quinone cyclophanes, Chem.Phys.Lett., 190 (1992), 574–580

    Article  CAS  Google Scholar 

  259. Burshtein, A. I.: Diffusional desaturation of electron transfer, J.Chem.Phys., 98 (1993), 4711–4717

    Article  CAS  Google Scholar 

  260. Tachiya, M. and Hilczer, M. (1994) Solvent effect on the electron transfer rate and the energy gap law, in Gauduel, Y. and Rossky, P. J. (eds.), Ultrafast reaction dynamics and solvent effects, AIP Press, New York, pp.447–459.

    Google Scholar 

  261. Rauhut, G. and Clark, T.: Molecular orbital studies of electron-transfer reactions, J.Chem.Soc., Faraday Trans., 90 (1994), 1783–1788

    Article  CAS  Google Scholar 

  262. Marguet, S., Mialocq, J. C., Millie, P., Berthier, G. and Momicchioli, F.: Intramolecular charge transfer and trans-cis isomerization of the DCM styrene dye in polar solvents. A CS-INDO MRCI study, Chem.Phys., 160 (1992), 265–279

    Article  CAS  Google Scholar 

  263. Simon, J. D. and Doolen, R.: On the dimensionality of the reaction coordinate of intramolecular charge-transfer reactions in protic solvents, J.Am.Chem.Soc., 114 (1992), 4861–4870

    Article  CAS  Google Scholar 

  264. Gould, I., Young, R. H., Mueller, L. J., Albrecht, A. C. and Farid, S.: Electronic structures of exciplexes and excited charge-transfer complexes, J. Am. Chem. Soc., 116 (1994), 8188–8199

    CAS  Google Scholar 

  265. Broo, A.: Electronic structure of donor-spacer-acceptor molecules of potential interest for molecular electronics. I. Donor-.pi. spacer-acceptor, Chem. Phys., 169 (1993), 135–150

    CAS  Google Scholar 

  266. Marquez, F., Zabala, I. and Tomas, F.: Phosphorescence emission and polarization of 3-carboxyquinoline, J.Lumin., 55 (1993). 25–30

    CAS  Google Scholar 

  267. Torri, H. and Tasumi, M.: Correlation between redshifts and widths of the 0-0 band in the absorption spectra of all-trans-β-carotene in solution, J.Chem.Phys., 98 (1993), 3697–3702

    Google Scholar 

  268. Zeng, J., Craw, J. S., Hush, N. S. and Reimers, J. R.: Solvent effects on molecular and ionic spectra. 4. Photochemistry of Fe2+(H2O)6 in water revisited: possible mechanisms for the primacy absorption process leading to electron ejection, J. Phys. Chem., 98 (1994), 11075–11088

    Article  CAS  Google Scholar 

  269. Luhmer, M., Stein, M. L. and Reisse, J.: Relative polarity of 1,3-dioxane and 1,4-dioxane studied by the reaction field theory and via computer simulations, Heterocycles, 37 (1994), 1041–1051

    CAS  Google Scholar 

  270. Ben-Nun, M. and Levin, R. D.: Dynamics of bimolecular reactions in solution: a nonadiabatic activation mode, J.Chem.Phys., 97 (1992), 8341–8356

    Article  CAS  Google Scholar 

  271. Schenter, G. K., McRae, R. P. and Garrett, B. C.: Dynamic solvent effects on activated chemical reactions. I. Classical effects of reaction-path curvature, J.Chem.Phys., 97 (1992), 9116–9137

    Article  CAS  Google Scholar 

  272. Charutz, D. M. and Levine, R. D.: Dynamics of barrier crossing in solution: simulations and a hardsphere model, J.Chem.Phys., 98 (1993), 1979–1988

    Article  CAS  Google Scholar 

  273. Hu, X. and Martens, C. C.: Classical-trajectory simulation of the cluster-atom association reaction iodine-argon cluster (I-Am) + I-> I2 + nAr. I. Capture of iodine by the I(Ar)12 cluster, J.Chem.Phys., 98 (1993). 8551–8559

    CAS  Google Scholar 

  274. Maroncelli, M.: The dynamics of solvation in polar liquids, J.Mol.Liq., 57 (1993), 1–37

    Article  CAS  Google Scholar 

  275. Phelps, D. K., Weaver, M. J. and Ladanyi, B. M.: Solvent dynamic effects in electron transfer: molecular dynamics simulations of reactions in methanol, Chem. Phys., 176 (1993), 575–588

    Article  CAS  Google Scholar 

  276. Krause, J. L., Whitnell, R. M., Wilson, K. E. and Yan, Y. J. (1994) &“Classical&” quantum control with application to solution reaction dynamics, in Gauduel, Y. and Rossky, P. J. (eds.), Ultrafast reaction dynamics and solvent effects, AIP Press, New York, pp.3–15.

    Google Scholar 

  277. Pappalardo, R. M., Martinez, J. M. and Sanchez Marcos, E.: Geometrical structure of the cis-and trans-isomers of 1,2-dihaloethylenes and the energetics of their chemical equilibrium in solution., Chem.Phys.Lett., 225 (1994), 202–207

    Article  CAS  Google Scholar 

  278. Depaepe, J. M., Ryckaert, J. P. and Bellemans, A.: Kinetics of the geometric isomerization of cyclohexene in a stochastic bath, Mol. Phys., 78 (1993), 1575–1588

    CAS  Google Scholar 

  279. Weiss, S.: Molecular dynamics study of an isomerizing triatomic in solution, Mol.Phys., 81 (1994), 1281–1288

    CAS  Google Scholar 

  280. Wiberg, K. B. and Wong, M. W.: Solvent effects. 4. Effect of solvent on the E/Z energy difference for methyl formate and methyl acetate, J.Am.Chem.Soc., 115 (1993), 1078–1084

    CAS  Google Scholar 

  281. Contreras, J. G. and Alderete, J. B.: MO calculations of solvent effects on the prototropic tautomerism of 6-thiopurine, THEOCHEM, 115 (1994), 137–141

    CAS  Google Scholar 

  282. Rodrigues Prieto, F., Rios Rodriguez, M. C., Mosquera Gonzalez, M. and Rios Fernandez, M. A.: Ground-and excited-state tautomerism in 2-(3′-Hydroxy-2′-pyridyl)benzimidazole, J. Phys. Chem., 98 (1994), 8666–8672

    Google Scholar 

  283. El Tayar, N., Mark, A. E., Vallat, P., Brunne, R. A., Testa, B. and van Gunsteren, W. E.: Solvent-dependent conformation and hydrogen-bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations, J.Med. Chem., 36 (1993), 3757–3764

    Google Scholar 

  284. Alagona, G. and Ghio, C.: Stability and acidity of salicylic acid rotamersin aqueous solution. A continuous model study, J. Mol. Liq., 61 (1994), 1–16

    Article  CAS  Google Scholar 

  285. Migus, A., Gauduel, Y., Martin, J. L. and Antonetti, A.: Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime., Phys. Rev. Lett., 58 (1987), 1559–1562

    Article  CAS  Google Scholar 

  286. Long, F. H., Lu, H. and Eisenthal, K. B.: Femtosecond studies of the presolvated electron: an excited state of the solvated electron?, Phys.Rev.Lett., 64 (1990), 1469–1472

    CAS  Google Scholar 

  287. Long, F. H., Lu, H., Shi, X. and Eisenthal, K. B.: Intensity dependent geminate recombination in water., Chem.Phys.Lett., 185 (1991), 47–52

    Article  CAS  Google Scholar 

  288. Pommeret, S., Antonetti, A. and Gauduel, Y.: Electron hydration in pure liquid water. Existence of two nonequilibrium configuration in the near-IR region, J.Am.Chem.Soc., 113 (1991). 9105–9111

    Article  CAS  Google Scholar 

  289. Alfano, J. C., Walhout, P. K., Kimura, Y. and Barbara, P. F.: Ultrafast transient-absorption spectroscopy of the aqueous solvated electron, J.Chem.Phys., 98 (1993), 5996–5998

    Article  CAS  Google Scholar 

  290. Kimura, Y., Alfano, J. C., Walhout, P. K. and Barbara, P. F.: Ultrafast transient absorption spectroscopy of the solvated electron in water, J.Phys. Chem., 98 (1994), 3450–3458

    CAS  Google Scholar 

  291. Murphrey, T. H. and Rossky, P. J.: The role of solvent intramolecular modes in excess electron solvation dynamics, J.Chem.Phys., 99 (1993). 515–522

    Article  CAS  Google Scholar 

  292. Severance, D. L. and Jorgensen, W. L.: Effects of hydration on the Claisen rearrangement of allyl vinyl ether from computer simulations, J.Am.Chem.Soc., 114 (1992), 10966–10968

    Article  CAS  Google Scholar 

  293. Severance, D. L. and Jorgensen, W. L. (1994) Claisen rearrangement of allyl vinyl ether, in Cramer, C. J. and Truhlar, D. G. (eds.), Structure and Reactivity in Aqueous Solution, American Chemical Society, Washington, pp.243–259.

    Google Scholar 

  294. Andres, J., Bohm, S., Moliner, V., Silla, E. and Tunon, I.: A theoretical study of stationary structures for the addition of azide anion to tetrafuranosides: modeling the kinetic and thermodynamic controls by solvent effects, J. Phys. Chem., 98 (1994), 6955–6960

    CAS  Google Scholar 

  295. Hu, W.-P. and Truhlar, D. G.: Modeling transition state solvation at the single-molecule level: test of correlated ab initio predictions against experiment for the gas-phase SN2 reaction of microhydrated fluoride with methyl chloride, J.Am.Chem.Soc., 116 (1994), 7797–7800

    CAS  Google Scholar 

  296. Hase, W. L.: Variational unimolecular rate theory, Acc. Chem. Res., 16 (1983), 258–264

    Article  CAS  Google Scholar 

  297. Fong, F. K. (ed.), Radiationless processes. Topics in applied physics, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  298. Ulstrup, J.: Charge transfer processes in condensed media, Springer-Verlag, Berlin, 1979

    Google Scholar 

  299. Broeckhove, J. and Lathouwers, L. (ed.), Time-dependent quantum molecular dynamics, NATO ASI Series B: Physics, Plenum Press, New York, 1992.

    Google Scholar 

  300. Jortner, J. and Pullman, B. (ed.), Intramolecular dynamics, The Jerusalem Symposia on Quantum Chemistry and Biochemistry, Reidel, Dordrecht, 1982.

    Google Scholar 

  301. Schatz, G. C., Colton, M. C. and Grant, J. L.: A Quasiclassical trajectory of the state-to-state dynamics of H + H2O ↔ OH + H2, J. Phys. Chem, 88 (1984), 2971–2977

    CAS  Google Scholar 

  302. Wang, D. and Bowman, J. M.: Reduced dimensionality quantum calculations of mode specificity in OH+H2 ↔ H2O+H, J.Chem.Phys., 96 (1992), 8906–8913

    CAS  Google Scholar 

  303. Polanyi, J. C. and Zewail, A. H.: Direct obesrvation of the transition state, Acc. Chem. Res., 28 (1995), 119–132

    Article  CAS  Google Scholar 

  304. Forst, W.: Unimolecular rate theory test in thermal reactions, J.Phys.Chem., 76 (1972), 342–348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tapia, O., Andres, J., Stamato, F.L.M.G. (2002). Quantum Theory of Solvent Effects and Chemical Reactions. In: Tapia, O., Bertrán, J. (eds) Solvent Effects and Chemical Reactivity. Understanding Chemical Reactivity, vol 17. Springer, Dordrecht. https://doi.org/10.1007/0-306-46931-6_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-46931-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3995-3

  • Online ISBN: 978-0-306-46931-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics