Theoretical Basis for the Treatment of Solvent Effects in the Context of Density Functional Theory

  • Renato Contreras
  • Patricia Pérez
  • Arie Aizman
Part of the Understanding Chemical Reactivity book series (UCRE, volume 17)


Theoretical considerations leading to a density functional theory (DFT) formulation of the reaction field (RF) approach to solvent effects are discussed. The first model is based upon isolelectronic processes that take place at the nucleus of the host system. The energy variations are derived from the nuclear transition state (ZTS) model. The solvation energy is expressed in terms of the electrostatic potential at the nucleus of a pseudo atom having a fractional nuclear charge. This procedure avoids the introduction of arbitrary ionic radii in the calculation of insertion energy, since all integrations involved are performed over [0, ∞]. The quality of the approximations made are discussed within the frame of the Kohn-Sham formulation of density functional theory.

Introduction of the static density response function for a system with a constant number of electrons yields the RF - DFT model. This second approach is expected to be more useful in the analysis of chemical reactivity in condensed phases.


Density Functional Theory Solvation Energy Electrostatic Potential Solvent Effect Reaction Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bottcher, C.J.F. (1973) Theory of Electric Polarization, Elsevier Publishing Company, Amsterdam, London, New York, p. 129.Google Scholar
  2. 2.
    Constanciel, R. and Tapia, O. (1978) Theoret. Chim. Acta 48, 75.CrossRefGoogle Scholar
  3. 3.
    Constanciel, R. and Contreras, R. (1984) Theoret. Chim. Acta 65 1.Google Scholar
  4. 4.
    Contreras, R. and Aizman, A. (1985) Int. J. Quantum Chem. 27, 293.CrossRefGoogle Scholar
  5. 5.
    Contreras, R. and Aizman, A. (1989) Bol. Soc. Chil. Quim. 34, 93.Google Scholar
  6. 6.
    Duran, E. (1964) Electrostatique, Masson et Cie (Eds.), Paris.Google Scholar
  7. 7.
    Constanciel, R. (1986) Theoret. Chim. Acta 69, 505.CrossRefGoogle Scholar
  8. 8.
    Born, M. (1920) Physik. Z. 1, 45.Google Scholar
  9. 9.
    Jano, O. (1965) C.R. Acad. Sc. (Paris) 261, 103.Google Scholar
  10. 10.
    Germer Jr., H.A. (1974) Theoret. Chim. Acta 35, 27.CrossRefGoogle Scholar
  11. 11.
    Miertus, S. and Kyesel, O. (1977) Chem. Phys. 21, 27.Google Scholar
  12. 12.
    Miertus, S., Scrocco, E. and Tomasi, J. (1981) Chem. Phys. 55, 117.CrossRefGoogle Scholar
  13. 13.
    Cramer, C.J. and Truhlar, D. (1992) Science 256, 213.Google Scholar
  14. 14.
    Tapia, O. and Goscinsky, O. (1975) Mol. Phys. 29, 1653.Google Scholar
  15. 15.
    Stokes, R.H. (1964) J. Am. Chem. Soc. 86, 979.Google Scholar
  16. 16.
    Noyes, R. (1964) J. Am. Chem. Soc. 86, 971.Google Scholar
  17. 17.
    Contreras, R. and Aizman, A. (1991) Int. J. Quantum Chem. S25, 281.Google Scholar
  18. 18.
    Contreras, R. and Aizman, A. (1993) J. Mol. Struct. (Theochem) 282, 143.CrossRefGoogle Scholar
  19. 19.
    Sen, K.D. and Politzer, P. (1979) J. Chem. Phys. 71, 4218.Google Scholar
  20. 20.
    Politzer, P., Parr, R.G. and Murphy, D.R. (1983) J. Chem. Phys. 79, 3859.CrossRefGoogle Scholar
  21. 21.
    Clementi, E. and Roetti, C. (1974) At. Data Nucl. Data Tables 14, 1.Google Scholar
  22. 22.
    Morris, D.F.C. (1968) Structure and Bonding 4, 1.Google Scholar
  23. 23.
    Davis, D. W. (1982) Chem. Phys. Lett. 91, 459.CrossRefGoogle Scholar
  24. 24.
    Levy, M. (1978) J. Chem. Phys. 68, 5298.Google Scholar
  25. 25.
    Levy, M. (1979) J. Chem. Phys. 70, 1573.CrossRefGoogle Scholar
  26. 26.
    Hohenberg, P. and Kohn, W. (1964) Phys. Rev. 136, B864.CrossRefGoogle Scholar
  27. 27.
    Contreras, R., Mendizabal, F. and Aizman, A. (1994) Phys. Rev. A 49, 3439.CrossRefGoogle Scholar
  28. 28.
    Norskov, J. K. and Lang, N. D. (1980) Phys. Rev. B21, 2131.Google Scholar
  29. 29.
    Sen, K. D. (1979) J. Chem. Phys. 70, 5334.Google Scholar
  30. 30.
    Sen, K. D., Seminario, J. and Politzer, P. (1989) J. Chem. Phys. 90, 4374.Google Scholar
  31. 31.
    Kohn, W. and Sham, L. J. (1965) Phys. Rev. 140, A1133.CrossRefGoogle Scholar
  32. 32.
    Puska, M. J. and Nieminen, R. M. (1984) Phys. Rev. B29, 5382.Google Scholar
  33. 33.
    Slater, J. C. (1974) The Self Consistent Field For Molecules and Solids 4, McGraw-Hill.Google Scholar
  34. 34.
    Parr, R. G. and Yang, W. (1989) Density Functional Theory of Atoms and Molecules, Oxford Press, New York, Oxford.Google Scholar
  35. 35.
    Pearson, R. G. (1986) J. Am. Chem. Soc. 108, 6109.Google Scholar
  36. 36.
    Vela, A. and Gasquez, J. L. (1990) J. Am. Chem. Soc. 112, 1490.CrossRefGoogle Scholar
  37. 37.
    Claverie, P., Daudey, J. P., Langlet, B., Pullman, B., Piazzola, D. and Huron, M. J. (1978) J. Phys. Chem. 82, 405.CrossRefGoogle Scholar
  38. 38.
    Stott, M. and Zaremba, E. (1980) Phys. Rev. A21, 12.Google Scholar
  39. 39.
    Berkowitz, M. and Parr, R. G. (1988) J. Chem. Phys. 88, 2254.Google Scholar
  40. 40.
    Contreras, R., Perez, P. and Aizman, A. (1995) Int. J. Quantum Chem., in press.Google Scholar
  41. 41.
    Berkowitz, M., Ghosh, S. K. and Parr, R. G. (1985) J. Am. Chem. Soc. 107, 6811.CrossRefGoogle Scholar
  42. 42.
    Perez, P. and Contreras, R., to be submitted.Google Scholar
  43. 43.
    Baeten, A., De Proft, F., Langenaeker, W. and Geerlings, P. (1994) J. Mol. Struct. (Theochem) 306, 203.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Renato Contreras
    • 1
  • Patricia Pérez
    • 1
  • Arie Aizman
    • 2
  1. 1.Departamento de Quimica, Centro de Mecanica Cuantica Aplicada, Facultad de CienciasUniversidad de ChileCasilla 653- SantiagoChile
  2. 2.Departamento de Quimica, Facultad de CienciasUniversidad Tecnica Federico Santa MariaCasilla 110 — V, ValparaisoChile

Personalised recommendations