Advertisement

Continuum Solvation Models

  • Christopher J. Cramer
  • Donald G. Truhlar
Part of the Understanding Chemical Reactivity book series (UCRE, volume 17)

Abstract

This chapter reviews the theoretical background for continuum models of solvation, recent advances in their implementation, and illustrative examples of their use. Continuum models are the most efficient way to include condensed-phase effects into quantum mechanical calculations, and this is typically accomplished by the using self-consistent reaction field (SCRF) approach for the electrostatic component. This approach does not automatically include the non-electrostatic component of solvation, and we review various approaches for including that aspect. The performance of various models is compared for a number of applications, with emphasis on heterocyclic tautomeric equilibria because they have been the subject of the widest variety of studies. For nonequilibrium applications, e.g., dynamics and spectroscopy, one must consider the various time scales of the solvation process and the dynamical process under consideration, and the final section of the review discusses these issues.

Keywords

Polarize Continuum Model Solvation Shell Solvation Free Energy Solvent Accessible Surface Area Multipole Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Warshel and M. Levitt, J. Mol. Biol., 103, 227 (1976).CrossRefGoogle Scholar
  2. 2.
    S. J. Weiner, U. C. Singh, and P. A. Kollman, J. Am Chem. Soc., 107, 2219 (1985).Google Scholar
  3. 3.
    M. J. Field, P. A. Bash, and M. Karplus, J. Comp. Chem., 11, 700 (1990).Google Scholar
  4. 4.
    J. Gao, J. Phys. Chem., 96, 537 (1992).Google Scholar
  5. 5.
    V. V. Vasilyev, A. A. Bliznyuk, and A. A. Voityuk, Int. J. Quant. Chem., 44, 897 (1992).CrossRefGoogle Scholar
  6. 6.
    R. V. Stanton, D. S. Hartsough, and K. M. Merz, J. Phys. Chem., 97, 11868 (1993).Google Scholar
  7. 7.
    V. Théry, D. Rinaldi, J.-L. Rivail, B. Maigret, and G. G. Ferenczy, J. Comp. Chem., 15, 269 (1994).Google Scholar
  8. 8.
    U. C. Singh and P. A. Kollman, J. Comp. Chem., 7, 718 (1986).Google Scholar
  9. 9.
    J. Gao, J. Am. Chem. Soc., 115, 2930 (1993).Google Scholar
  10. 10.
    J. L. Gao and X. F. Xia, J. Am. Chem. Soc., 115, 9667 (1993).Google Scholar
  11. 11.
    A. Warshel, T. Schewins, and M. Fothergill, J. Am. Chem. Soc., 116, 8437 (1994).CrossRefGoogle Scholar
  12. 12.
    D. Wei and D. R. Salahub, Chem. Phys. Lett., 224, 291 (1994).CrossRefGoogle Scholar
  13. 13.
    J. Gao, J. Am. Chem. Soc., 116, 1563 (1994).Google Scholar
  14. 14.
    J. Gao, Proc Indian Acad. Sci. (Chem. Sci.), 106, 507 (1994).Google Scholar
  15. 15.
    T. J. Marrone, D. S. Hartsough, and K. M. Merz, J. Phys. Chem., 98, 1341 (1994).Google Scholar
  16. 16.
    J. Gao, J. Am. Chem. Soc., 116, 9324 (1994).Google Scholar
  17. 17.
    J. Åqvist and A. Warshel, Chem. Rev., 93, 2418 (1993).Google Scholar
  18. 18.
    A. Warshel and Z. T. Chu, in Structure and Reactivity in Aqueous Solution, C. J. Cramer and D. G. Truhlar, Eds., American Chemical Society, Washington, DC, 1994 p. 71.Google Scholar
  19. 19.
    J. Gao, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., VCH, New York, Vol. 7, in press.Google Scholar
  20. 20.
    M. Sprik and M. L. Klein, J. Chem Phys., 89, 7556 (1988).Google Scholar
  21. 21.
    U. Niesar, G. Corongiu, E. Clementi, G. R. Kneller, and D. K. Bhattacharya, J. Chem. Phys., 94, 7949 (1990).Google Scholar
  22. 22.
    L. X. Dang, J. E. Rice, J. Caldwell, and P. A. Kollman, J. Am. Chem. Soc., 113, 2481 (1991).CrossRefGoogle Scholar
  23. 23.
    M. Sprik, J. Chem. Phys., 95, 6762 (1991).CrossRefGoogle Scholar
  24. 24.
    L. X. Dang, J. Chem. Phys., 97, 2659 (1992).Google Scholar
  25. 25.
    S. W. Rick, S. J. Stuart, and B. J. Berne, J. Chem. Phys., 101, 6141 (1994).CrossRefGoogle Scholar
  26. 26.
    S.-B. Zhu and C. F. Wong, J. Phys. Chem., 98, 4695 (1994).Google Scholar
  27. 27.
    I. Alkorta, M. Bachs, and J. J. Perez, Chem. Phys. Lett., 224, 160 (1994).CrossRefGoogle Scholar
  28. 28.
    D. N. Bernardo, Y. Ding, K. Krogh-Jespersen, and R. M. Levy, J. Phys. Chem, 98, 4180 (1994).CrossRefGoogle Scholar
  29. 29.
    D. Van Belle, M. Prévost, G. Kippens, and S. J. Wodak, in Structure and Reactivity in Aqueous Solution, C. J. Cramer and D. G. Truhlar, Eds., American Chemical Society, Washington, DC, 1994 p. 318.Google Scholar
  30. 30.
    L. S. Sremeniak, L. Perera, and M. L. Berkowitz, Chem. Phys. Lett., 218, 377 (1994).Google Scholar
  31. 31.
    D. A. McQuarrie, Statistical Mechanics. Harper & Row, New York, 1976.Google Scholar
  32. 32.
    H. Eyring, D. Henderson, D. J. Stover, and E. M. Eyring, Statistical Mechanics and Dynamics. John Wiley & Sons, New York, 1982.Google Scholar
  33. 33.
    M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids. Oxford University Press, London, 1987.Google Scholar
  34. 34.
    J. A, McCammon and S. C. Harvey, Dynamics of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, 1987.Google Scholar
  35. 35.
    D. L. Beveridge and F. M. DiCapua, Annu. Rev. Biophys. Biophys, Chem., 18, 431 (1989).CrossRefGoogle Scholar
  36. 36.
    W. L. Jorgensen, Acc. Chem. Res., 22, 184 (1989).CrossRefGoogle Scholar
  37. 37.
    P. M. King, C. A. Reynolds, J. W. Essex, G. A. Worth, and W. G. Richards, Mol. Sim., 5, 262 (1990).Google Scholar
  38. 38.
    D. W. Heermann, Computer Simulation Methods in Theoretical Physics. Springer-Verlag, Berlin, 1990.Google Scholar
  39. 39.
    K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics. Springer-Verlag, Berlin, 1992.Google Scholar
  40. 40.
    P. Kollman, Chem. Rev., 93, 2395 (1993).CrossRefGoogle Scholar
  41. 41.
    P. M. King, in Computer Simulation of Biomolecular Systems, W. F. van Gunsteren, P. K. Weinger and A. J. Wilkinson, Eds., ESCOM, Leiden, 1993, Vol. 2, p. 267.Google Scholar
  42. 42.
    W. F. van Gunsteren, F. J. Luque, D. Timms, and A. E. Torda, Annu. Rev. Biophys. Biomol. Struct., 23, 847 (1994).CrossRefGoogle Scholar
  43. 43.
    J. Åqvist, C. Medina, and J.-E. Samuelsson, Protein Eng., 7, 385 (1994).CrossRefGoogle Scholar
  44. 44.
    T. J. A. Ewing and T. P. Lybrand, J. Phys. Chem., 98, 1748 (1994).CrossRefGoogle Scholar
  45. 45.
    D. A. Pearlman and P. A. Kollman, J. Chem. Phys., 94, 4532 (1991).CrossRefGoogle Scholar
  46. 46.
    M. Mazor and B. M. Pettitt, Mol. Sim., 6, 1 (1991).Google Scholar
  47. 47.
    M. J. Mitchell and J. A. McCammon, J. Comp. Chem., 12, 271 (1991).Google Scholar
  48. 48.
    A. Hodel, T. Simonson, R. O. Fox, and A. T. Brünger, J. Phys. Chem., 97, 3409 (1993).CrossRefGoogle Scholar
  49. 49.
    D. A. Pearlman, J. Phys. Chem., 98, 1487 (1994).CrossRefGoogle Scholar
  50. 50.
    M. E. Clamp, P. G. Baker, C. J. Stirling, and A. Brass, J. Comp. Chem., 15, 838 (1994).Google Scholar
  51. 51.
    F. S. Lee and A. Warshel, J. Chem. Phys., 97, 3100 (1992).Google Scholar
  52. 52.
    K. Tasaki, S. McDonald, and J. W. Brady, J. Comp. Chem., 14, 278 (1993).Google Scholar
  53. 53.
    B. M. Ladanyi and M. S. Skaf, Annu. Rev. Phys. Chem., 44, 335 (1993).CrossRefGoogle Scholar
  54. 54.
    P. J. Steinbach and B. R. Brooks, J. Comp. Chem., 15, 667 (1994).Google Scholar
  55. 55.
    J. W. Brady and R. K. Schmidt, J. Phys. Chem., 97, 958 (1993).CrossRefGoogle Scholar
  56. 56.
    N. H. Frank and W. Tobocman, in Fundamental Formulas of Physics, D. H. Menzel, Ed. Dover, New York, 1960, Vol. 1, p. 307.Google Scholar
  57. 57.
    J. B. Marion, Classical Electromagnetic Radiation. Academic, New York, 1965.Google Scholar
  58. 58.
    K. Denbigh, The Principles of Chemical Equilibrium. Cambridge University Press, London, 1981.Google Scholar
  59. 59.
    M. Born, Z. Physik, 1, 45 (1920).Google Scholar
  60. 60.
    L. Onsager, Chem. Rev., 13, 73 (1933).CrossRefGoogle Scholar
  61. 61.
    J. G. Kirkwood, J. Chem. Phys., 2, 351 (1934).Google Scholar
  62. 62.
    J. G. Kirkwood, J. Chem. Phys., 7, 911 (1939).Google Scholar
  63. 63.
    B. Lee and F. M. Richards, J. Mol. Biol., 55, 379 (1971).CrossRefGoogle Scholar
  64. 64.
    R. B. Hermann, J. Phys. Chem., 76, 2754 (1972).CrossRefGoogle Scholar
  65. 65.
    M. G. Evans and M. Polanyi, Trans. Faraday Soc., 31, 875 (1935).Google Scholar
  66. 66.
    H. Eyring and W. F. K. Wynne-Jones, J. Chem. Phys., 3, 492 (1935).Google Scholar
  67. 67.
    M. M. Kreevoy and D. G. Truhlar, in Investigation of Rates and Mechanisms of Reactions, Part I, C. F. Bernasconi, Ed. Wiley, New York, 1986 p. 13.Google Scholar
  68. 68.
    H. A. Kramers, Physica (The Hague), 7, 284 (1940).Google Scholar
  69. 69.
    D. G. Truhlar, W. L. Hase, and J. T. Hynes, J. Phys. Chem., 87, 2664 (1983).Google Scholar
  70. 70.
    R. A. Marcus, J. Chem. Phys., 24, 979 (1956).Google Scholar
  71. 71.
    O. Tapia, in Quantum Theory of Chemical Reactions, R. Daudel, A. Pullman, L. Salem and A. Viellard, Eds., Reidel, Dordrecht, 1980, Vol. 2, p. 25.Google Scholar
  72. 72.
    O. Tapia, in Molecular Interactions, H. Rajaczak and W. J. Orville-Thomas, Eds., John Wiley & Sons, London, 1982, Vol. 3, p. 47.Google Scholar
  73. 73.
    M. L. J. Drummond, Prog. Biophys. Mol. Biol., 47, 1 (1986).Google Scholar
  74. 74.
    A. Rashin, Int. J. Quant. Chem., Quant. Biol., 15, 103 (1988).Google Scholar
  75. 75.
    M. E. Davis and J. A. McCammon, Chem. Rev., 90, 509 (1990).CrossRefGoogle Scholar
  76. 76.
    J. Tomasi, R. Bonaccorsi, R. Cammi, and F. J. Olivares del Valle, J. Mol. Struct. (Theochem), 234, 401 (1991).CrossRefGoogle Scholar
  77. 77.
    J. G. Ángyán, J. Math. Chem., 10, 93 (1992).Google Scholar
  78. 78.
    J. Tomasi, in Structure and Reactivity in Aqueous Solution, C. J. Cramer and D. G. Truhlar, Eds., American Chemical Society, Washington, DC, 1994 p. 10.Google Scholar
  79. 79.
    J. Tomasi and M. Persico, Chem. Rev., 94, 2027 (1994).CrossRefGoogle Scholar
  80. 80.
    A. A. Rashin and M. A. Bukatin, Biophys. Chem., 51, 167 (1994).Google Scholar
  81. 81.
    C. J. Cramer and D. G. Truhlar, in Quantitative Treatments of Solute/Solvent Interactions, P. Politzer and J. S. Murray, Eds., Elsevier, Amsterdam, 1994, Vol. 1, p. 9.Google Scholar
  82. 82.
    P. E. Smith and B. M. Pettitt, J. Phys. Chem., 98, 9700 (1994).Google Scholar
  83. 83.
    C. J. Cramer and D. G, Truhlar, in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds., VCH, New York, 1995, Vol. 6, p. 1.Google Scholar
  84. 84.
    W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism. Addison-Wesley, Reading, MA, 1962.Google Scholar
  85. 85.
    D. R. Corson and P. Lorrain, Introduction to Electromagnetic Fields and Waves. W.H. Freeman, San Francisco, 1962.Google Scholar
  86. 86.
    J. E. Sanhueza, O. Tapia, W. G. Laidlaw, and M. Trsic, J. Chem. Phys., 70, 3096 (1979).CrossRefGoogle Scholar
  87. 87.
    D. Rinaldi and J.-L. Rivail, Theor. Chim. Acta, 32, 57 (1973).CrossRefGoogle Scholar
  88. 88.
    J.-L. Rivail and D. Rinaldi, Chem. Phys., 18, 233 (1976).CrossRefGoogle Scholar
  89. 89.
    S. Yomosa, J. Phys. Soc. Japan, 35, 1738 (1973).Google Scholar
  90. 90.
    S. Yomosa, J. Phys. Soc. Japan, 36, 1655 (1974).Google Scholar
  91. 91.
    O. Tapia and O. Goscinski, Mol. Phys., 29, 1653 (1975).Google Scholar
  92. 92.
    O. Tapia, E. Poulain, and F. Sussman, Theor. Chim. Acta, 47, 171 (1978).Google Scholar
  93. 93.
    K. V. Mikkelsen, H. Agren, H. J. A. Jensen, and T. Helgaker, J. Phys. Chem., 89, 3086 (1988).Google Scholar
  94. 94.
    J.-L. Rivail, Compt. Rend. Acad. Sci. Paris, 311, 307 (1990).Google Scholar
  95. 95.
    J.-L. Rivail, D. Rinaldi, and M. F. Ruiz-López, in Theoretical and Computational Methods for Organic Chemistry, S. J. Formosinho, I. G. Czismadia and L. G. Arnaut, Eds., Kluwer, Dordrecht, 1991 p. 79.Google Scholar
  96. 96.
    M. A. Aguilar, F. J. Olivares del Valle, and J. Tomasi, J. Chem. Phys., 150, 151 (1991).Google Scholar
  97. 97.
    F. J. Olivares del Valle and J. Tomasi, Chem. Phys., 150, 139 (1991).Google Scholar
  98. 98.
    F. J. Olivares del Valle, R. Bonaccorsi, R. Cammi, and J. Tomasi, J. Mol. Struct. (Theochem), 230, 295 (1991).Google Scholar
  99. 99.
    M. W. Wong, M. J. Frisch, and K. B. Wiberg, J. Am. Chem. Soc., 113, 4776 (1991)Google Scholar
  100. 100.
    C. Chipot, D. Rinaldi, and J.-L. Rivail, Chem. Phys. Lett., 191, 287 (1992).CrossRefGoogle Scholar
  101. 101.
    F. J. Olivares del Valle and M. A. Aguilar, J. Comp. Chem., 13, 115 (1992).Google Scholar
  102. 102.
    J. G. Ágyán, Int. J. Quant. Chem., 47, 469 (1993).Google Scholar
  103. 103.
    F. J. Olivares del Valle and M. A. Aguilar, J. Mol. Struct. (Theochem), 280, 25 (1993).Google Scholar
  104. 104.
    F. J. Olivares del Valle, M. A. Aguilar, and S. Tolosa, J. Mol. Struct. (Theochem), 279, 223 (1993).Google Scholar
  105. 105.
    C. Chipot, L. G. Gorb, and J.-L. Rivail, J. Phys. Chem., 98, 1601 (1994).Google Scholar
  106. 106.
    K. V. Mikkelsen, P. Jørgensen, and H. J. A. Jensen, J. Chem. Phys., 100, 6597 (1994).Google Scholar
  107. 107.
    J. Jortner, Mol. Phys., 5, 257 (1962).Google Scholar
  108. 108.
    J. Gehlen, D. Chandler, H. J. Kim, and J. T. Hynes, J. Phys. Chem., 96, 1748 (1992).Google Scholar
  109. 109.
    H. J. Kim and J. T. Hynes, J. Am. Chem Soc., 114, 10508 (1992).Google Scholar
  110. 110.
    M. V. Basilevsky, G. E. Chudinov, and M. D. Newton, Chem. Phys., 179, 263 (1994).CrossRefGoogle Scholar
  111. 111.
    R. Bianco, J. J. I. Timoneda, and J. T. Hynes, J. Phys. Chem., 98, 12103 (1994).CrossRefGoogle Scholar
  112. 112.
    O. Tapia, F. Colonna, and J. G. Angyan, J. Chim. Phys., 87, 875 (1990).Google Scholar
  113. 113.
    O. Tapia, J. Mol. Struct. (Theochem), 226, 59 (1991).CrossRefGoogle Scholar
  114. 114.
    J. G. Ángyán, J. Math. Chem., 10, 93 (1992).Google Scholar
  115. 115.
    B. A. Bransden and C. J. Joachain, Physics of Atoms and Molecules. Longman, London, 1983.Google Scholar
  116. 116.
    C. J. F. Böttcher, O. C. van Belle, P. Bordewijk, and A. Rip, in Theory of Electric Polarization, Elsevier, Amsterdam, 1973 pp. 94ff.Google Scholar
  117. 117.
    O. Tapia and B. Silvi, J. Phys. Chem., 84, 2646 (1980).CrossRefGoogle Scholar
  118. 118.
    P. Claverie, in Quantum Theory of Chemical Reactions, R. Daudel, A. Pullman, L. Salem and A. Veillard, Eds., Reidel, Dordrecht, 1982, Vol. 3, p. 151.Google Scholar
  119. 119.
    R. Constanciel and R. Contreras, Theor. Chim. Acta, 65, 1 (1984).Google Scholar
  120. 120.
    E. L. Mehler, Adv. Comput. Biol., 2, in press (1995).Google Scholar
  121. 121.
    D. F. Eggers, N. W. Gregory, G. D. Halsey, and B. S. Rabinovitch, Physical Chemistry. John Wiley & Sons, New York, 1964.Google Scholar
  122. 122.
    B. J. Yoon and A. M. Lenhoff, J. Comp. Chem., 11, 1080 (1990).Google Scholar
  123. 123.
    V. Frecer and S. Miertus, Int. J. Quant. Chem, 42, 1449 (1992).CrossRefGoogle Scholar
  124. 124.
    G. G. Hammes, Principles of Chemical Kinetics. Academic, New York, 1977.Google Scholar
  125. 125.
    M. Holst, R. E. Kozack, F. Saied, and S. Subramanian, J. Biomol. Struct. Dynam., 11, 1437 (1994).Google Scholar
  126. 126.
    S. P. Slagle, R. E. Kozack, and S. Subramanian, J. Biomol. Struct. Dynam., 12, 439 (1994).Google Scholar
  127. 127.
    P. Debye, Polar Molecules. Chemical Catalog Co., New York, 1929.Google Scholar
  128. 128.
    B. Roux, H.-A. Yu, and M. Karplus, J. Phys. Chem., 94, 4683 (1990).CrossRefGoogle Scholar
  129. 129.
    F. Figueirido, G. S. Del Buono, and R. M. Levy, Biophys. Chem., 51, 235 (1994).CrossRefGoogle Scholar
  130. 130.
    M. Bucher and T. L. Porter, J. Phys. Chem., 90, 3406 (1986).Google Scholar
  131. 131.
    S. Ehrenson, J. Comp. Chem., 10, 77 (1989).Google Scholar
  132. 132.
    A. Wallqvist, Chem. Phys. Lett., 165, 437 (1990).CrossRefGoogle Scholar
  133. 133.
    N. Matubayasi, L. H. Reed, and R. M. Levy, J. Phys. Chem., 98, 10640 (1994).CrossRefGoogle Scholar
  134. 134.
    A. A. Rashin and M. A. Bukatin, J. Phys. Chem., 98, 386 (1994).CrossRefGoogle Scholar
  135. 135.
    P. Jungwirth and R. Zahradnik, Chem. Phys. Lett., 217, 319 (1994).CrossRefGoogle Scholar
  136. 136.
    T. Lazaridis and M. E. Paulaitis, J. Phys. Chem., 98, 635 (1994).CrossRefGoogle Scholar
  137. 137.
    I. I. Vaisman, F. K. Brown, and A. Tropsha, J. Phys. Chem., 98, 5559 (1994).CrossRefGoogle Scholar
  138. 138.
    I. Tuñón, E. Silla, and J. L. Pascual-Ahuir, Protein Eng., 5, 715 (1992).Google Scholar
  139. 139.
    R. M. Lynden-Bell, J. Phys. Chem., 97, 2991 (1993).Google Scholar
  140. 140.
    H. S. Chan and K. A. Dill, J. Chem. Phys., 101, 7007 (1994).CrossRefGoogle Scholar
  141. 141.
    D. J. Giesen, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem, 98, 4141 (1994).CrossRefGoogle Scholar
  142. 142.
    R. A. Pierotti, J. Phys. Chem., 67, 1840 (1963).Google Scholar
  143. 143.
    B. Linder, Adv. Chem. Phys., 12, 225 (1967).Google Scholar
  144. 144.
    H. Hoshi, M. Sakurai, Y. Inouye, and R. Chûjô, J. Chem. Phys., 87, 1107 (1987).CrossRefGoogle Scholar
  145. 145.
    R. Bonaccorsi, E. Ojalvo, and J. Tomasi, Coll. Czech. Chem. Comm., 53, 2320 (1988).CrossRefGoogle Scholar
  146. 146.
    R. Bonaccorsi, F. Floris, P. Palla, and J. Tomasi, Theor. Chim. Acta, 162, 213 (1990).Google Scholar
  147. 147.
    R. Bonaccorsi, E. Ojalvo, P. Palla, and J. Tomasi, Chem. Phys., 143, 245 (1990).CrossRefGoogle Scholar
  148. 148.
    M. Cossi, B. Mennucci, and J. Tomasi, Chem Phys. Lett., 228, 165 (1994).CrossRefGoogle Scholar
  149. 149.
    K. A. Sharp and B. Honig, Annu. Rev. Biophys. Biophys. Chem., 19, 301 (1990).CrossRefGoogle Scholar
  150. 150.
    K. Sharp, A. Jean-Charles, and B. Honig, J. Phys. Chem., 96, 3822 (1992).CrossRefGoogle Scholar
  151. 151.
    D. Sitkoff, K. A. Sharp, and B. Honig; J. Phys. Chem., 98, 1978 (1994).CrossRefGoogle Scholar
  152. 152.
    A. Rashin, J. Phys. Chem., 94, 1725 (1990).CrossRefGoogle Scholar
  153. 153.
    V. Mohan, M. E. Davis, J. A. McCammon, and B. M. Pettitt, J. Phys. Chem., 96, 6428 (1992).CrossRefGoogle Scholar
  154. 154.
    C. Lim, S. L. Chan, and P. Tole, in Structure and Reactivity in Aqueous Solution, C. J. Cramer and D. G. Truhlar, Eds., American Chemical Society, Washington, DC, 1994, Vol. 568, p. 50.Google Scholar
  155. 155.
    L. Onsager, J. Am. Chem. Soc., 58, 1486 (1936).CrossRefGoogle Scholar
  156. 156.
    A. Dega-Szafran, M. Gdaniec, M. Grunwald-Wyspianska, Z. Kosturkiewicz, J. Koput, P. Krzyzanowski, and M. Szafran, J. Mol. Struct., 270, 99 (1992).CrossRefGoogle Scholar
  157. 157.
    M. Szafran, M. M. Karelson, A. R. Katritzky, J. Koput, and M. C. Zerner, J. Comp. Chem., 14, 371 (1993).Google Scholar
  158. 158.
    M. W. Wong, K. B. Wiberg, and M. J. Frisch, J. Chem. Phys., 95, 8991 (1991).CrossRefGoogle Scholar
  159. 159.
    L. C. G. Freitas, R. L. Longo, and A. M. Simas, J. Chem. Soc., Faraday Trans., 88, 189 (1992).CrossRefGoogle Scholar
  160. 160.
    C. Adamo and F. Lelj, Chem. Phys. Lett., 223, 54 (1994).CrossRefGoogle Scholar
  161. 161.
    S. C. Tucker and D. G. Truhlar, Chem Phys. Lett., 157, 164 (1989).CrossRefGoogle Scholar
  162. 162.
    J. L. Rivail and B. Terryn, J. Chem. Phys., 79, 1 (1982).Google Scholar
  163. 163.
    D. Rinaldi, M. F. Ruiz-Lopez, and J.-L. Rivail, J. Chem. Phys., 78, 834 (1983).CrossRefGoogle Scholar
  164. 164.
    V. Dillet, D. Rinaldi, J. G. Angyán, and J.-L. Rivail, Chem. Phys. Lett., 202, 18 (1993).CrossRefGoogle Scholar
  165. 165.
    V. Dillet, D. Rinaldi, and J.-L. Rivail, J. Phys. Chem., 98, 5034 (1994).CrossRefGoogle Scholar
  166. 166.
    G. P. Ford and B. Wang, J. Comp. Chem., 13, 229 (1992).Google Scholar
  167. 167.
    R. R. Pappalardo, M. Reguero, and M. A. Robb, Chem. Phys. Lett., 212, 12 (1993).CrossRefGoogle Scholar
  168. 168.
    M. J. Huron and P. Claverie, J. Phys. Chem., 76, 2123 (1972).CrossRefGoogle Scholar
  169. 169.
    H. L. Friedman, Mol. Phys., 29, 29 (1975).Google Scholar
  170. 170.
    J. I. Gersten and A. M. Sapse, J. Am. Chem. Soc., 107, 3786 (1985).CrossRefGoogle Scholar
  171. 171.
    G. Karlstrom, J. Phys. Chem., 92, 1315 (1988).Google Scholar
  172. 172.
    M. Karelson, T. Tamm, and M. C. Zerner, J. Phys. Chem., 97, 11901 (1993).CrossRefGoogle Scholar
  173. 173.
    H. J. Kim, R. Bianco, B. J. Gertner, and J. T. Hynes, J. Phys. Chem., 97, 1723 (1993).Google Scholar
  174. 174.
    J. T. Hynes, H. J. Kim, J. R. Mathis, and J. Juanos i Timoneda, J. Mol. Liquids, 57, 53 (1993).CrossRefGoogle Scholar
  175. 175.
    S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys., 55, 117 (1981).Google Scholar
  176. 176.
    H. Hoshi, M. Sakurai, Y. Inoue, and R. Chûjô, J. Mol. Struct. (Theochem), 180, 267 (1988).CrossRefGoogle Scholar
  177. 177.
    T. Furuki, A. Umeda, M. Sakurai, Y. Inoue, and R. Chûjô, J. Comp. Chem., 15, 90 (1994).Google Scholar
  178. 178.
    G. P. Ford and B. Wang, J. Am. Chem Soc., 114, 10563 (1992).CrossRefGoogle Scholar
  179. 179.
    B. Wang and G. P. Ford, J. Chem. Phys., 97, 4162 (1992).Google Scholar
  180. 180.
    T. Fox and N. Rosch, J. Mol. Struct. (Theochem), 276, 279 (1992).CrossRefGoogle Scholar
  181. 181.
    T. Fox, N. Rosch, and R. J. Zauhar, J. Comp. Chem., 14, 253 (1993).Google Scholar
  182. 182.
    M. Negre, M. Orozco, and F. J. Luque, Chem. Phys. Lett., 196, 27 (1992).CrossRefGoogle Scholar
  183. 183.
    F. J. Luque, M. J. Negre, and M. Orozco, J. Phys. Chem., 97, 4386 (1993).Google Scholar
  184. 184.
    A. A. Rashin, M. A. Bukatin, J. Andzelm, and A. T. Hagler, Biophys. Chem, 51, 375 (1994).Google Scholar
  185. 185.
    K. Baldridge, R. Fine, and A. Hagler, J. Comp. Chem., 15, 1217 (1994).Google Scholar
  186. 186.
    Y. Chen, L. Noodleman, D. A. Case, and D. Bashford, J. Phys. Chem., 98, 11059 (1994).Google Scholar
  187. 187.
    F. Peradejordi, Cahiers Phys., 17, 343 (1963).Google Scholar
  188. 188.
    T. Kozaki, K. Morihashi, and O. Kikuchi, J. Mol. Struct. (Theochem), 168, 265 (1988).CrossRefGoogle Scholar
  189. 189.
    T. Kozaki, M. Morihashi, and O. Kikuchi, J. Am. Chem. Soc., 111, 1547 (1989).CrossRefGoogle Scholar
  190. 190.
    A. Klamt and G. Schüürmann, J. Chem Soc., Perkin Trans. 2, 799 (1993).Google Scholar
  191. 191.
    D. Eisenberg and A. D. McLachlan, Nature, 319, 199 (1986).CrossRefGoogle Scholar
  192. 192.
    T. Ooi, M. Oobatake, G. Nemethy, and H. A. Scheraga, Proc. Natl. Acad. Sci., USA, 84, 3086 (1987).Google Scholar
  193. 193.
    W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc., 112, 6127 (1990).CrossRefGoogle Scholar
  194. 194.
    D. Rinaldi, B. J. Costa Cabral, and J.-L. Rivail, Chem Phys. Lett., 125, 495 (1986).CrossRefGoogle Scholar
  195. 195.
    P. Young, D. V. S. Green, I. H. Hillier, and N. A. Burton, Mol. Phys., 80, 503 (1993).Google Scholar
  196. 196.
    I. Tuñón, E. Silla, and J. Bertrán, J. Phys. Chem., 97, 5547 (1993).Google Scholar
  197. 197.
    J. Langlet, P. Claverie, J. Caillet, and A. Pullman, J. Phys. Chem., 92, 1617 (1988).CrossRefGoogle Scholar
  198. 198.
    H. Sato and S. Kato, J. Mol. Struct. (Theochem), 310, 67 (1994).CrossRefGoogle Scholar
  199. 199.
    E. O. Purisima and S. H. Nilar, J. Comp. Chem., 16, 681 (1995).Google Scholar
  200. 200.
    A. Varnek, G. Wipff, A. S. Glebov, and D. Feil, J. Comp. Chem., 16, 1 (1995).Google Scholar
  201. 201.
    G. Karlström and B. Halle, J. Chem. Phys., 99, 8056 (1993).Google Scholar
  202. 202.
    F. Floris and J. Tomasi, J. Comp. Chem., 10, 616 (1989).Google Scholar
  203. 203.
    F. M. Floris, J. Tomasi, and J. L. Pascual-Ahuir, J. Comp. Chem., 39, 784 (1991).Google Scholar
  204. 204.
    C. Amovilli, Chem. Phys. Lett., 229, 244 (1994).CrossRefGoogle Scholar
  205. 205.
    M. Bachs, F. J. Luque, and M. Orozco, J. Comp. Chem., 15, 446 (1994).Google Scholar
  206. 206.
    F. J. Luque, M. Bachs, and M. Orozco, J. Comp. Chem., 15, 847 (1994).Google Scholar
  207. 207.
    M. Orozco, M. Bachs, and F. J. Luque, J. Comp. Chem., 16, 563 (1995).Google Scholar
  208. 208.
    F. J. Luque, C. Alemán, M. Bachs, and M. Orozco, preprintGoogle Scholar
  209. 209.
    F. J. Luque, C. Alemán, and M. Orozco, preprintGoogle Scholar
  210. 210.
    C. J. Cramer and D. G. Truhlar, J. Am. Chem Soc., 113, 8305 (1991).Google Scholar
  211. 211.
    C. J. Cramer and D. G. Truhlar, Science, 256, 213 (1992).Google Scholar
  212. 212.
    C. J. Cramer and D. G. Truhlar, J. Comp. Chem., 13, 1089 (1992).Google Scholar
  213. 213.
    J. W. Storer, D. J. Giesen, G. D. Hawkins, G. C. Lynch, C. J. Cramer, D. G. Truhlar, and D. A. Liotard, in Structure and Reactivity in Aqueous Solution, C. J. Cramer and D. G. Truhlar, Eds., American Chemical Society, Washington, DC, 1994 p. 24.Google Scholar
  214. 214.
    D. A. Liotard, G. D. Hawkins, G. C.. Lynch, C. J. Cramer, and D. G. Truhlar, J. Comp. Chem., 16, 422 (1995).Google Scholar
  215. 215.
    G. D. Hawkins, C. J. Cramer, and D. G. Truhlar, Chem Phys. Lett., submitted for publicationGoogle Scholar
  216. 216.
    D. J. Giesen, J. W. Storer, C. J. Cramer, and D. G. Truhlar, J. Am. Chem. Soc., 117, 1057 (1995).CrossRefGoogle Scholar
  217. 217.
    D. J. Giesen, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem., 99, 7137 (1995).CrossRefGoogle Scholar
  218. 218.
    C. C. Chambers, D. J. Giesen, C. J. Cramer, and D. G. Truhlar, to be publishedGoogle Scholar
  219. 219.
    G. Rauhut, T. Clark, and T. Steinke, J. Am. Chem. Soc., 115, 9174 (1993).Google Scholar
  220. 220.
    D. J. Tannor, B. Marten, R. Murphy, R. A. Friesner, D. Sitkoff, A. Nicholls, M. Ringnalda, W. A. Goddard, and B. Honig, J. Am. Chem. Soc., 116, 11875 (1994).CrossRefGoogle Scholar
  221. 221.
    R. W. Dixon, J. M. Leonard, and W. J. Hehre, Israel J. Chem., 33, 427 (1993).Google Scholar
  222. 222.
    T. N. Truong and E. V. Stefanovich, Chem. Phys. Lett., 240, 253 (1995).CrossRefGoogle Scholar
  223. 223.
    T. N. Truong and E. V. Stefanovich, J. Chem. Phys., in press.Google Scholar
  224. 224.
    D. Thirumalai, K. Onda, and D. G. Truhlar, J. Chem. Phys., 74, 526 (1981).Google Scholar
  225. 225.
    A. J. Stone, Chem. Phys. Lett., 83, 233 (1981).CrossRefGoogle Scholar
  226. 226.
    A. J. Stone and M. Alderton, Mol. Phys., 56, 1047 (1985).Google Scholar
  227. 227.
    W. A. Sokalski, D. A. Keller, R. L. Ornstein, and R. Rein, J. Comp. Chem., 14, 970 (1993).Google Scholar
  228. 228.
    C. Chipot, J. G. Angyán, G. G. Ferenczy, and H. A. Scheraga, J. Phys. Chem., 97, 6628 (1993).Google Scholar
  229. 229.
    D. E. Williams, J. Comp. Chem., 15, 719 (1994).Google Scholar
  230. 230.
    G. J. Hoijtink, E. de Boer, P. H. Van der Meij, and W. P. Weijland, Recl. Trav. Chim. Pays-Bas, 75, 487 (1956).Google Scholar
  231. 231.
    I. Jano, Compt. Rend. Acad. Sci. Paris, 261, 103 (1965).Google Scholar
  232. 232.
    G. Klopman, Chem Phys. Lett., 1, 200 (1967).CrossRefGoogle Scholar
  233. 233.
    R. Contreras and A. Aizman, Int. J. Quant. Chem., 27, 293 (1985).CrossRefGoogle Scholar
  234. 234.
    M. Schaefer and C. Froemmel, J. Mol. Biol., 216, 1045 (1990).Google Scholar
  235. 235.
    J. W. Storer, D. J. Giesen, C. J. Cramer, and D. G. Truhlar, J. Comput.-Aid. Mol. Des., 9, 87 (1995).Google Scholar
  236. 236.
    C. J. Cramer and D. G. Truhlar, J. Comput.-Aid. Mol. Des., 6, 629 (1992).Google Scholar
  237. 237.
    I. Alkorta, H. O. Villar, and J. J. Perez, J. Comp. Chem., 14, 620 (1993).Google Scholar
  238. 238.
    C. J. Cramer, G. D. Hawkins, and D. G. Truhlar, J. Chem. Soc., Faraday Trans., 90, 1802 (1994).CrossRefGoogle Scholar
  239. 239.
    A. Ben-Naim, Statistical Thermodynamics for Chemists and Biochemists. Plenum, New York, 1992.Google Scholar
  240. 240.
    C. Reichardt, Solvents and Solvent Effects in Organic Chemistry. VCH, New York, 1990.Google Scholar
  241. 241.
    L. Streyer, Biochemistry. W. H. Freeman and Co., New York, 1981.Google Scholar
  242. 242.
    K. Ijima, K. Tanaka, and S. Onuma, J. Mol. Struct., 246, 257 (1991).Google Scholar
  243. 243.
    R. Bonaccorsi, P. Palla, and J. Tomasi, J. Am. Chem. Soc., 106, 1945 (1984).CrossRefGoogle Scholar
  244. 244.
    J. S. Gaffney, R. C. Pierce, and L. Friedman, J. Am. Chem. Soc., 99, 4293 (1977).CrossRefGoogle Scholar
  245. 245.
    W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory. Wiley, New York, 1986.Google Scholar
  246. 246.
    W. J. Hehre, L. D. Burke, A. J. Shusterman, and W. J. Pietro, Experiments in Computational Organic Chemistry. Wavefunction Inc., Irvine, CA, 1993.Google Scholar
  247. 247.
    W. J. Pietro, J. Chem. Ed., 71, 416 (1994).CrossRefGoogle Scholar
  248. 248.
    S. Inouye, Chem. Pharm. Bull., 16, 1134 (1968).Google Scholar
  249. 249.
    W. C. Herndon, J. Phys. Org. Chem., 6, 634 (1993).CrossRefGoogle Scholar
  250. 250.
    S. H. Hilal, L. A. Carreira, G. L. Baughman, S. W. Karickhoff, and C. M. Melton, J. Phys. Org. Chem., 7, 122 (1994).CrossRefGoogle Scholar
  251. 251.
    E. Rajasekaran, B. Jayaram, and B. Honig, J. Am. Chem. Soc., 116, 8238 (1994).CrossRefGoogle Scholar
  252. 252.
    J. J. Urban, R. L. Vontersch, and G. R. Famini, J. Org. Chem., 59, 5239 (1994).CrossRefGoogle Scholar
  253. 253.
    B. Terryn, J.-L. Rivail, and D. Rinaldi, J. Chem. Res. (S), 141 (1981).Google Scholar
  254. 254.
    S. Galera, A. Oliva, J. M. Lluch, and J. Bertrán, J. Mol. Struct. (Theochem), 110, 15 (1984).CrossRefGoogle Scholar
  255. 255.
    J. L. Pascual-Ahuir, J. Andres, and E. Silla, Chem Phys. Lett., 169, 297 (1990).CrossRefGoogle Scholar
  256. 256.
    I. Tuñón, E. Silla, and J. Tomas, J. Phys. Chem., 96, 9043 (1992).Google Scholar
  257. 257.
    D. H. Aue, H. M. Webb, and M. T. Bowers, J. Am. Chem. Soc., 98, 311 (1976).Google Scholar
  258. 258.
    M. Meot-Ner and L. W. Sieck, J. Am. Chem. Soc., 113, 4448 (1991).Google Scholar
  259. 259.
    R. C. Weast, Ed., CRC Handbook of Chemistry and Physics CRC Press, Boca Raton, FL, 1980.Google Scholar
  260. 260.
    C. J. Cramer and D. G. Truhlar, J. Am. Chem. Soc., 113, 8552 9901(E) (1991).Google Scholar
  261. 261.
    I. Tuñón, E. Silla, and J.-L. Pascual-Ahuir, J. Am. Chem. Soc., 115, 2226 (1993).Google Scholar
  262. 262.
    J.-L. Rivail, S. Antoczak, C. Chipot, M. F. Ruiz-López, and L. G. Gorb, in Structure and Reactivity in Aqueous Solution, C. J. Cramer and D. G. Truhlar, Eds., American Chemical Society, Washington, DC, 1994, Vol. 568, p. 154.Google Scholar
  263. 263.
    K. Ando and J. T. Hynes, in Structure and Reactivity in Aqueous Solution, C. J. Cramer and D. G. Truhlar, Eds., American Chemical Society, Washington, DC, 1994, Vol. 568, p. 143.Google Scholar
  264. 264.
    R. A. Marcus, Annu. Rev. Phys. Chem., 15, 155 (1964).CrossRefGoogle Scholar
  265. 265.
    R. A. Robertson, Trans. Faraday Soc., 32, 743 (1936).Google Scholar
  266. 266.
    A. R. Katritzky, Handbook of Heterocyclic Chemistry. Pergamon, Oxford, 1985.Google Scholar
  267. 267.
    J. S. Kwiatkowski, T. J. Zielinski, and R. Rein, Adv. Quantum Chem., 18, 85 (1986).Google Scholar
  268. 268.
    M. M. Karelson, A. R. Katritzky, M. Szafran, and M. C. Zerner, J. Chem. Soc., Perkin Trans. 2, 195 (1990).Google Scholar
  269. 269.
    M. M. Karelson, T. Tamm, A. R. Katritzky, S. J. Cato, and M. C. Zerner, Tetrahedron Comput. Methodol., 2, 295 (1989).CrossRefGoogle Scholar
  270. 270.
    H. S. Rzepa, M. Y. Yi, M. M. Karelson, and M. C. Zerner, J. Chem. Soc., Perkin Trans. 2,635 (1991).Google Scholar
  271. 271.
    O. G. Parchment, D. V. S. Green, P. J. Taylor, and I. H. Hillier, J. Am. Chem. Soc., 115, 2352 (1993).CrossRefGoogle Scholar
  272. 272.
    S. Woodcock, D. V. S. Green, M. A. Vincent, I. H. Hillier, M. F. Guest, and P. Shenvood, J. Chem Soc., Perkin Trans. 2, 2151 (1992).Google Scholar
  273. 273.
    M. A. Aguilar and F. J. Olivares del Valle, Chem. Phys., 129, 439 (1989).CrossRefGoogle Scholar
  274. 274.
    U. C. Singh and P. A. Kollman, J. Comp. Chem, 5, 129 (1984).Google Scholar
  275. 275.
    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys., 79, 926 (1983).CrossRefGoogle Scholar
  276. 276.
    S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case, J. Comp. Chem., 7, 230 (1986).Google Scholar
  277. 277.
    C, J. Cramer and D. G. Truhlar, J. Am. Chem. Soc., 115, 8810 (1993).Google Scholar
  278. 278.
    A. R. Katritzky and J. M. Lagowski, Adv. Heterocycl. Chem., 6, 1 (1963).Google Scholar
  279. 279.
    J. Elguero, C. Marzin, A. R. Katritzky, and P. Linda, The Tautomerism of Heterocycles. Academic, New York, 1976.Google Scholar
  280. 280.
    I. R. Gould and I. H. Hillier, J. Chem. Soc., Perkin Trans. 2, 1771 (1993).Google Scholar
  281. 281.
    F. Tomás, J. Catalán, P. Pérez, and J. Elguero, J. Org. Chem., 59, 2799 (1994).Google Scholar
  282. 282.
    J. Catalán, P. Pérez, and J. Elguero, J. Org. Chem., 58, 5276 (1993).Google Scholar
  283. 283.
    D. S. Wofford, D. M. Forkey, and J. G. Russell, J. Org. Chem., 47, 5132 (1982).CrossRefGoogle Scholar
  284. 284.
    W. M. F. Fabian, J. Comp. Chem, 12, 17 (1991).Google Scholar
  285. 285.
    O. G. Parchment, I. H. Hillier, D. V. S. Green, N. A. Burton, J. O. Morley, and H. F. Schaefer, J. Chem. Soc., Perkin Trans. 2, 1681 (1992).Google Scholar
  286. 286.
    H. Fritz, Bull. Soc. Chim. Belg., 93, 559 (1984).Google Scholar
  287. 287.
    M. W. Wong, R. Leung-Toung, and C. Wentrup, J. Am. Chem. Soc., 115, 2465 (1993).Google Scholar
  288. 288.
    P. Beak, Acc. Chem. Res., 10, 186 (1977).CrossRefGoogle Scholar
  289. 289.
    L. D. Hatherley, R. D. Brown, P. D. Godfrey, A. P. Pierlot, W. Caminati, D. Damiani, S. Melandri, and L. B. Favero, J. Phys. Chem., 97, 46 (1993).CrossRefGoogle Scholar
  290. 290.
    A. Les, L. Adamowicz, M. J. Nowak, and L. Lapinski, J. Mol. Struct. (Theochem), 277, 313 (1992).CrossRefGoogle Scholar
  291. 291.
    O. G. Parchment, N. A. Burton, and I. H. Hillier, Chem. Phys. Lett., 203, 46 (1993).CrossRefGoogle Scholar
  292. 292.
    R. J. Hall, N. A. Burton, I. H. Hillier, and P. E. Young, Chem. Phys. Lett., 220, 129 (1994).CrossRefGoogle Scholar
  293. 293.
    V. Barone and C. Adamo, Chem. Phys. Lett., 226, 399 (1994).Google Scholar
  294. 294.
    J. S. Kwiatkowski and A. Tempczyk, Chem. Phys., 85, 397 (1984).CrossRefGoogle Scholar
  295. 295.
    M. M. Karelson, A. R. Katritzky, M. Szafran, and M. C. Zerner, J. Org. Chem., 54, 6030 (1989).CrossRefGoogle Scholar
  296. 296.
    H. S. Rzepa and M. Y. Yi, J. Chem. Soc., Perkin Trans. 2, 531 (1991).Google Scholar
  297. 297.
    M. W. Wong, K. B. Wiberg, and M. J. Frisch, J. Am. Chem. Soc., 114, 1645 (1992).Google Scholar
  298. 298.
    V. Barone and C. Adamo, J. Comp. Chem, 15, 395 (1994).Google Scholar
  299. 299.
    V. Barone and C. Adamo, J. Photochem. Photobiol. A: Chem., 80, 211 (1994).CrossRefGoogle Scholar
  300. 300.
    J. E. Del Bene, J. Phys. Chem., 98, 5902 (1994).Google Scholar
  301. 301.
    B. Wang and G. P. Ford, personal communication.Google Scholar
  302. 302.
    S. H. Vosko, L. Wilks, and M. Nussair, Can. J. Phys., 58, 1200 (1980).CrossRefGoogle Scholar
  303. 303.
    A. D. Becke, Phys. Rev. A, 38, 3098 (1988).CrossRefGoogle Scholar
  304. 304.
    J. P. Perdew, Physical Reviews B, 33; 8822 (1986).Google Scholar
  305. 305.
    P. O. Löwdin, Adv. Quantum Chem., 2, 213 (1965).Google Scholar
  306. 306.
    B. Pullman and A. Pullman, Adv. Heterocycl. Chem., 13, 77 (1971).Google Scholar
  307. 307.
    M. D. Topal and J. R. Fresco, Nature, 263, 285 (1976).Google Scholar
  308. 308.
    M. Szczeniak, K. Szczepaniak, J. S. Kwiatkowski, K. KuBulat, and W. B. Person, J. Am. Chem. Soc., 110, 8319 (1988).Google Scholar
  309. 309.
    M. Scanlan and I. H. Hillier, J. Am. Chem. Soc., 106, 3737 (1984).CrossRefGoogle Scholar
  310. 310.
    J. S. Kwiatkowski, R. J. Bartlett, and W. B. Person, J. Am. Chem. Soc., 110, 2353 (1988).CrossRefGoogle Scholar
  311. 311.
    A. Les, L. Adamowicz, and R. J. Bartlett, J. Phys. Chem., 93, 4001 (1989).Google Scholar
  312. 312.
    J. Leszcynski, J. Phys. Chem., 96, 1649 (1992).Google Scholar
  313. 313.
    J. W. Boughton and P. Pulay, Int. J. Quant. Chem., 47, 49 (1993).CrossRefGoogle Scholar
  314. 314.
    D. A. Estrin, L. Paglieri, and G. Corongiu, J. Phys. Chem., 98, 5653 (1994).CrossRefGoogle Scholar
  315. 315.
    A. R. Katritzky and M. Karelson, J. Am. Chem Soc., 113, 1561 (1991).CrossRefGoogle Scholar
  316. 316.
    P. E. Young and I. H. Hillier, Chem Phys. Lett., 215, 405 (1993).CrossRefGoogle Scholar
  317. 317.
    M. Orozco and F. J. Luque, J. Am Chem. Soc., 117, 1378 (1995).CrossRefGoogle Scholar
  318. 318.
    J. G. Contreras and J. B. Alderete, J. Mol. Struct. (Theochem), 309, 137 (1994).CrossRefGoogle Scholar
  319. 319.
    C. Alhambra, F. J. Luque, J. Estelrich, and M. Orozco, J. Org. Chem., 60, 969 (1995).CrossRefGoogle Scholar
  320. 320.
    J. G. Contreras and I. B. Alderte, Bol. Sci. Chil. Quim., 39, 17 (1994).Google Scholar
  321. 321.
    J. G. Contreras and J. B. Alderete, Chem. Phys. Lett., 232, 61 (1995).CrossRefGoogle Scholar
  322. 322.
    X.-C. Wang, J. Nichols, M. Feyereisen, M. Gutowski, J. Boatz, A. D. J. Haymet, and J. Simons, J. Phys. Chem., 95, 10419 (1991).Google Scholar
  323. 323.
    G. Briegleb and W. Strohmeier, Angew. Chem., 64, 409 (1952).Google Scholar
  324. 324.
    S. G. Mills and P. Beak, J. Org. Chem., 50, 1216 (1985).CrossRefGoogle Scholar
  325. 325.
    S. E. Barrows, F. J. Dulles, C. J. Cramer, D. G. Truhlar, and A. D. French, Carbohydr. Res., in pressGoogle Scholar
  326. 326.
    H. B. Broughton and P. R. Woodward, J. Comput.-Aid. Mol. Des., 4, 147 (1990).Google Scholar
  327. 327.
    S. Gelin and P. Pollet, Tetrahedron Lett., 21, 4491 (1980).CrossRefGoogle Scholar
  328. 328.
    K. Saito and T. Yamaguchi, J. Chem. Soc., Perkin Trans. 2, 1605 (1979).Google Scholar
  329. 329.
    J. Whiting and J. T. Edward, Can. J. Chem., 49, 3799 (1971).Google Scholar
  330. 330.
    D. Chandler and L. R. Pratt, J. Chem. Phys., 65, 2925 (1976).CrossRefGoogle Scholar
  331. 331.
    L. R. Pratt and D. C. Chandler, J. Chem. Phys., 67, 3683 (1977).Google Scholar
  332. 332.
    D. Chandler, J. Chem. Phys., 68, 2959 (1978).CrossRefGoogle Scholar
  333. 333.
    J. T. Hynes, in Theory of Chemical Reaction Dynamics, M. Baer, Ed. CRC Press, Boca Raton, 1985, Vol. 4, p. 171.Google Scholar
  334. 334.
    T. L. Hill, Statistical Mechanics: Principles and Selected Applications. McGraw-Hill, New York, 1956.Google Scholar
  335. 335.
    D. J. Tobias, S. F. Sneddon, and C. L. Brooks, J. Mol. Biol., 216, 783 (1990).CrossRefGoogle Scholar
  336. 336.
    G. J. Tawa and L. R. Pratt, in Structure and Reactivity in Aqueous Solution, C. J. Cramer and D. G. Truhlar, Eds., American Chemical Society, Washington, DC, 1994, Vol. 568, p. 60.Google Scholar
  337. 337.
    T. C. Beutler and W. F. van Gunsteren, Chem. Phys. Lett., 237, 308 (1995).CrossRefGoogle Scholar
  338. 338.
    C. Ritchie, Pure Appl. Chem., 51, 153 (1979).Google Scholar
  339. 339.
    J. Jaume, J. M. Lluch, A. Oliva, and J. Bertrán, Chem. Phys. Lett., 106, 232 (1984).CrossRefGoogle Scholar
  340. 340.
    S. C. Tucker and D. G. Truhlar, J. Am. Chem. Soc., 112, 3347 (1990).Google Scholar
  341. 341.
    C. J. Cramer and D. G. Truhlar, J. Am. Chem. Soc., 114, 8794 (1992).CrossRefGoogle Scholar
  342. 342.
    I. Tuñón, E. Silla, and J. Bertrán, J. Chem. Soc,, Faraday Trans., 90, 1757 (1994).Google Scholar
  343. 343.
    J. Frau, J. Donoso, F. Muñoz, and F. G. Blanco, Helv. Chim. Acta, 77, 1557 (1994).CrossRefGoogle Scholar
  344. 344.
    J. Bertrán, J. M. Lluch, A. Gonzalez-Lafont, V. Dillet, and V. Pérez, in Structure and Reactivity in Aqueous Solution, C. J. Cramer and D. G. Truhlar, Eds., American Chemical Society, Washington, DC, 1994, Vol. 568, p. 168.Google Scholar
  345. 345.
    P. M. Morse, Thermal Physics. W. A. Benjamin, New York, 1969.Google Scholar
  346. 346.
    C. V. Heer, Statistical Mechanics, Kinetic Theory, and Stochastic Processes, Academic, New York, 1972.Google Scholar
  347. 347.
    J. McConnell, Rotational Brownian Motion and Dielectric Theory. Academic, New York, 1980.Google Scholar
  348. 348.
    L. D. Zusman, Soviet Phys. JETP, 42, 794 (1976).Google Scholar
  349. 349.
    I. Rips and J. Jortner, J. Chem. Phys., 87, 2090 (1987).Google Scholar
  350. 350.
    J. Hubbard and L. Onsager, J. Chem. Phys., 67, 4850 (1977).Google Scholar
  351. 351.
    D. Kivelson and H. Friedman, J. Chem Phys., 93, 7026 (1989).Google Scholar
  352. 352.
    R. Saxton, Proc. R. Soc. London, A213, 473 (1952).Google Scholar
  353. 353.
    S. K. Garg and C. P. Smyth, J. Phys. Chem., 69, 1294 (1965).Google Scholar
  354. 354.
    J. Crossley, Adv. Molec. Relax. Processes, 2, 69 (1970).Google Scholar
  355. 355.
    L. D. Zusman, Chem. Phys., 119, 51 (1988).CrossRefGoogle Scholar
  356. 356.
    Z. Wang, J. Tang, and J. R. Noms, J. Chem. Phys., 97, 7251 (1992).Google Scholar
  357. 357.
    S. Lee and J. T. Hynes, J. Chem. Phys., 88, 6863 (1988).Google Scholar
  358. 358.
    M. V. Basilevsky, G. E. Chudinov, and D. W. Napolov, J. Phys. Chem., 97, 3270 (1993).CrossRefGoogle Scholar
  359. 359.
    D. G. Truhlar, G. K. Schenter, and B. C. Garrett, J. Chem. Phys., 98, 5756 (1993).Google Scholar
  360. 360.
    A. I. Burshtein and A. A. Zharikov, Chem. Phys., 152, 23 (1956).Google Scholar
  361. 361.
    B. C. Garrett and G. K. Schenter, in Structure and Reactivity in Aqueous Solution, C. J. Cramer and D. G. Truhlar, Eds., American Chemical Society, Washington, DC, 1994, Vol. 568, p. 122.Google Scholar
  362. 362.
    L. D. Zusman, Chem. Phys., 49, 265 (1980).CrossRefGoogle Scholar
  363. 363.
    A. Garg, J. N. Onuchic, and V. Ambegaokar, J. Chem. Phys., 83, 4491 (1985).CrossRefGoogle Scholar
  364. 364.
    M. V. Basilevsky and G. E. Chudinov, Chem. Phys., 157, 345 (1991).Google Scholar
  365. 365.
    H. J. Kim and J. T. Hynes, J. Chem. Phys., 93, 5211 (1990).Google Scholar
  366. 366.
    I. V. Alexandrov, Chem. Phys., 51, 449 (1980).CrossRefGoogle Scholar
  367. 367.
    R. Zwanzig, J. Stat. Phys., 9, 215 (1973).CrossRefGoogle Scholar
  368. 368.
    S. A. Adelman and J. D. Dull, J. Chem Phys., 64, 2375 (1976).Google Scholar
  369. 369.
    S. A. Adelman, Adv. Chem. Phys., 44, 143 (1980).Google Scholar
  370. 370.
    S. A. Adelman and C. L. Brooks, J. Phys. Chem., 86, 1511 (1982).CrossRefGoogle Scholar
  371. 371.
    R. F. Grote and J. T. Hynes, J. Chem. Phys., 73, 2715 (1980).CrossRefGoogle Scholar
  372. 372.
    G. van der Zwan and J. T. Hynes, J. Chem. Phys., 78, 4174 (1983).Google Scholar
  373. 373.
    S. Mukamel, Annu. Rev. Phys. Chem., 41, 647 (1990).CrossRefGoogle Scholar
  374. 374.
    L.E. Fried and S. Mukamel, Adv. Chem. Phys., 84, 435 (1993).Google Scholar
  375. 375.
    R. M. Stratt, Acc. Chem. Res., 28, 201 (1995).CrossRefGoogle Scholar
  376. 376.
    M. Karelson and M. C. Zerner, J. Am. Chem. Soc., 112, 9405 (1990).CrossRefGoogle Scholar
  377. 377.
    M. M. Karelson and M. C. Zemer, J. Phys. Chem., 96, 6949 (1992).CrossRefGoogle Scholar
  378. 378.
    T. Fox and N. Rösch, Chem. Phys. Lett., 191, 33 (1992).CrossRefGoogle Scholar
  379. 379.
    N. Rosch and M. C. Zemer, J. Phys. Chem., 98, 5817 (1994).Google Scholar
  380. 380.
    A. Klamt, preprintGoogle Scholar
  381. 381.
    D. Chandler, in Liquids, Freezing, and Glass Transition, J. P. Hansen, D. Levesque and J. Zinn-Justin, Eds., Elsevier, Amsterdam, 1991 p. 193.Google Scholar
  382. 382.
    M. J. Weaver, Chem. Rev., 92, 463 (1992).CrossRefGoogle Scholar
  383. 383.
    B. C. Garrett and G. K. Schenter, Int. Rev. Phys. Chem., 13, 263 (1994).CrossRefGoogle Scholar
  384. 384.
    P. J. Rossky and J. D. Simon, Nature, 370, 263 (1994).CrossRefGoogle Scholar
  385. 385.
    S. C. Tucker, in New Trends in Kramer’s Reaction Rate Theory, P. Talkner and P. Hänggi, Eds., Kluwer, Dordrecht, 1995 p. 5.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Christopher J. Cramer
    • 1
  • Donald G. Truhlar
    • 1
  1. 1.Department of Chemistry and Supercomputer InstituteUniversity of MinnesotaMinneapolis

Personalised recommendations