Skip to main content

Reductive Dechlorination of Chlorinated Solvents on Zerovalent Iron Surfaces

  • Chapter
Physicochemical Groundwater Remediation

Abstract

Optimal design of zerovalent iron-based permeable reactive barriers requires a complete understanding of dechlorination kinetics and mechanism. The effect of other ambient constituents, which may retard or enhance the dechlorination processes, should be considered. Literature has revealed that reduction of chlorinated compounds occurs on the iron surface and the reaction rate is limited by surface processes, rather than transport processes. Adsorption onto the surface can take place on both reactive sites that are responsible for the reductive dechlorination, and nonreactive sites that only sequester the contaminants. This chapter explores a model based on the assumptions that adsorption equilibrium on the two types of surface sites is always maintained, but the reduction rate is directly proportional to the amount sorbed onto reactive sites only. Numerical solutions are obtained to illustrate the effect of coadsorbates on the adsorption and reduction of chlorinated compounds under this mechanistic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Allen-King R. M., Halket R. M., and Burris D. R. (1997) Reductive transformation and sorption of cis-and trans-1,2-dichloroethylene in a metallic iron-water system. Environmental Toxicology and Chemistry 16(3), 424–429.

    Article  CAS  Google Scholar 

  • Arnold W. A. and Robert A. L. (1998) Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0). Environmental Science & Technology 32(19), 3017–3025.

    CAS  Google Scholar 

  • Burris D. R., Allen-King R. M., Manoranjan V. S., Campbell T. J., Loraine G. A., and Deng B. (1998) Chlorinated ethene reduction by cast iron: sorption and mass transfer. Journal of Environmental Engineering 124(10), 1012–1019.

    CAS  Google Scholar 

  • Burris D. R., Campbell T. J., and Manoranjan V. S. (1995) Sorption of trichloroethylene and trichloroethylene in a batch reactive metallic iron-water system. Environmental Science & Technology 29(11), 2850–2855.

    Article  CAS  Google Scholar 

  • Campbell T. J., Burris D. R., Roberts A. L., and Wells R. J. (1997) Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system. Environmental Toxicology and Chemistry 16(4), 625–630.

    Article  CAS  Google Scholar 

  • Cherry J. A., Feenstra S., and Mackay D. M. (1996) Concepts for the remediation of sites contaminated with dense non-aqueous phase liquids (DNAPLs). In Dense Chlorinated Solvents and Other DNAPLs in Groundwater (ed. J. F. Pankow and J. A. Cherry), pp. 475–506. Waterloo Press.

    Google Scholar 

  • Deng B., Burris D. R., and Campbell T. J. (1999) Reduction of vinyl chloride in metallic iron-water systems. Environmental Science & Technology 33(15), 2651–2656.

    Article  CAS  Google Scholar 

  • Deng B., Campbell T. J., and Burris D. R. (1997) Hydrocarbon Formation in Metallic Iron/Water Systems. Environmental Science & Technology 31(4), 1185–1190.

    Article  CAS  Google Scholar 

  • Deng B., Hu S., and Burris D. R. (1998) Effect of iron corrosion inhibitors on trichloroethylene reduction. In Physical, Chemical, and Thermal Technologies (ed. G. B. Wickramanayake and R. R. Hinchee), pp. 341–346. Battelle Press.

    Google Scholar 

  • EPA. (1998) Permeable Reactive Barrier Technologies for Contaminant Remediation. United States Environmental Protection Agency. EPA/600/R-98/125.

    Google Scholar 

  • Focht R., Vogan J., and O’Hannesin S. (1996) Field application of reactive iron walls for in-site degradation of volatile organic compounds in groundwater. Remediation (Summer), 81–94.

    Google Scholar 

  • Gavaskar A. R., Gupta N., Sass B. M., Janosy R. J., and O’Sullivan D. (1998) Permeable Barriers for Groundwater Remediation. Battelle Press.

    Google Scholar 

  • Gillham R. W. and O’Hannesin S. F. (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32(6), 958–967.

    Article  CAS  Google Scholar 

  • Glod G., Angst W., Holliger C., and Schwarzenbach R. P. (1997) Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: reaction kinetics and reaction mechanisms. Environmental Science & Technology 31(1), 253–260.

    Article  CAS  Google Scholar 

  • Gossett, J. M. (1987) Measurement of Henry’s Law constants for C1 and C2 chlorinated hydrocarbons. Environ. Sci. Technol. 21, 202–208.

    Article  CAS  Google Scholar 

  • Hu S. (1999) Reductive Dechlorination of Trichloroethylene by Metallic Iron: Effects of Iron Corrosion and Corrosion Inhibition. Master Thesis, New Mexico Institute of Mining and Technology.

    Google Scholar 

  • Johnson T. L., Fish W., Gorby Y. A., and Tratnyek P. G. (1998) Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface. Journal of Contaminant Hydrology 29, 379–398.

    Article  CAS  Google Scholar 

  • Johnson T. L., Scherer M. M., and Tratnyek P. G. (1996) Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol. 30(8), 2634–2640.

    Article  CAS  Google Scholar 

  • Lasaga A. C. (1981) Transition state theory. In Kinetics of Geochemical Processes, Vol. 8 (ed. A. C. Lasaga and R. J. Kirkpatrick), pp. 135–169. Mineralogical Society of American.

    Google Scholar 

  • Mackay D. M. and Cherry J. A. (1989) Groundwater contamination: pump and treat remediation. Environmental Science & Technology 23, 630–636.

    Article  CAS  Google Scholar 

  • Matheson L. J. and Tratnyek P. G. (1994) Reductive dechlorination of chlorinated methanes by iron metal. Environmental Science & Technology 28(12), 2045–2053.

    CAS  Google Scholar 

  • NRC N. R. C. (1994) Alternatives for Ground Water Cleanup. National Academy Press.

    Google Scholar 

  • Orth W. S. and Gillham R. W. (1996) Dechlorination of trichloroethylene in aqueous solution using Fe0. Environmental Science & Technology 30(1), 66–71.

    Article  CAS  Google Scholar 

  • Prigogine I. (1967) Introduction to Thermodynamics of Irreversible Processes. Wiley-Interscience.

    Google Scholar 

  • Reynolds G. W., Hoff J. T., and Gillham R. W. (1990) Sampling bias caused by materials used to monitor halocarbons in groundwater. Environmental Science & Technology 24(1), 135–142.

    Article  CAS  Google Scholar 

  • Roberts L. A., Totten L. A., Arnold W. A., Burris D. R., and Campbell T. J. (1996) Reductive elimination of chlorinated ethylenes by zero-valent metals. Environmental Science & Technology 30(8), 2654–2659.

    Article  CAS  Google Scholar 

  • Scherer M. M, Westall J. C, ZiomekMoroz M, Tratnyek P. G, (1997) Kinetics of carbon tetrachloride reduction at an oxide-free iron electrode. Environmental Science & Technology 31(8) pp. 2385–2391.

    Article  CAS  Google Scholar 

  • Senzaki T. and Kumagai Y. (1988) Removal of chlorinated organic compounds from wastewater by reduction process: II. Treatment of trichloroethylene with iron powder. Kogyo Yosui 357, 2–7.

    Google Scholar 

  • Sivavec T. M. and Horney D. P. (1997) Reduction of chlorinated solvents by Fe(II) minerals, Preprints of ACS annual meeting-Division of Environmental Chemistry, San Francisco, CA. 115–117.

    Google Scholar 

  • Stumm W. and Sulzberger B. (1992) The cycling of iron in natural environments: consideration based on laboratory studies of heterogeneous redox processes. Geochimica et Cosmochimica Acta 56, 3233–3257.

    Article  CAS  Google Scholar 

  • Su C. and Puls R. W. (1999) Kinetics of trichloroethylene reduction by zerovalent iron and tin: pretreatment effect, apparent activation energy, and intermediate products. Environmental Science & Technology 33(1), 163–168.

    Article  CAS  Google Scholar 

  • Sweeny K. H. (1979) Reductive degradation treatment of industrial and municipal wastewaters. Water Reuse Symposium, 1487–1497.

    Google Scholar 

  • Sweeny K. H. (1981) Reductive treatment of industrial wastewaters. I. Process description. AIChE Symp. Ser., 67–71.

    Google Scholar 

  • Tratnyek P. G. (1996) Putting corrosion to use: remediating contaminated groundwater with zero-valent metals. Chemistry & Industry (1), 499–503.

    Google Scholar 

  • Tratnyek P. G. and Scherer M. M. (1998) The effect of natural organic matter on reduction by zero-valent iron, Preprints of ACS annual meeting-Division of Environmental Chemistry, Boston, MA, 125–126.

    Google Scholar 

  • Vogel T. M., Criddle C. S., and McCarty P. L. (1987) Transformations of halogenated aliphatic compounds. Environmental Science & Technology 21(8), 722–736.

    Article  CAS  Google Scholar 

  • Wilkins R. G. (1991) Kinetics and Mechanism of Reactions of Transition Metal Complexes. VCH.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Deng, B., Hu, S. (2002). Reductive Dechlorination of Chlorinated Solvents on Zerovalent Iron Surfaces. In: Smith, J.A., Burns, S.E. (eds) Physicochemical Groundwater Remediation. Springer, Boston, MA. https://doi.org/10.1007/0-306-46928-6_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-46928-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46569-7

  • Online ISBN: 978-0-306-46928-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics