Skip to main content

Surfactant-enhanced Desorption of Organic Pollutants from Natural Soil

  • Chapter
Book cover Physicochemical Groundwater Remediation

Abstract

The use of surface-active agents (i.e., surfactants) to increase the efficiency of pump-and-treat has been investigated for remediation sites where clean-up is limited by non-aqueous phase liquid dissolution and contaminant desorption. For both types of limitations, successful applications of the enhancement technologies have occurred at the laboratory scale and in a few small-scale field operations. For this chapter, emphasis is placed on assessing the use of surfactants to increase the rate of organic pollutant desorption from soil to water. The mechanisms of surfactant-enhanced desorption are introduced and factors affecting the efficiency and applicability of surfactant-enhanced remediation are discussed. To conclude the chapter, data are presented that show the effects of several different surfactants on the rate of trichloroethene (TCE) desorption from a peat soil. The surfactant Triton X-100 is shown to increase the rate of TCE desorption from a peat soil at several different concentrations. The increased rate of TCE desorption was caused by an increase in the desorption mass-transfer rate coefficient, as well as by increasing the concentration gradient driving desorption. This latter mechanism was only present at a surfactant concentration roughly twenty times the critical micelle concentration of Triton X-100. For the other surfactants tested - Tween 20, sodium dodecylsulfate, sodium dodecylbenzenesulfonate, and Triton X-405 - the rate of TCE desorption remained the same or was decreased. Results from this section emphasize the need for a better mechanistic understanding of the effects of surfactants on sorbed pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Ball, W. P., and Roberts, P. V. (1991). “Long-term sorption of halogenated organic chemicals by aquifer material. 2. Intraparticle diffusion.” Environ. Sci. Technol., 25, 1237–1249.

    CAS  Google Scholar 

  • Berens, A. R. (1989). “Solubility and diffusion of small molecules in PVC.” Journal of Vinyl Technology, 11(4), 171.

    CAS  Google Scholar 

  • Brusseau, M. L., Jessup, R. E., and Rao, P. S. C. (1991a). “Nonequilibrium sorption of organic chemicals: Elucidation of rate-limiting processes.” Environ. Sci. Technol., 25, 134–142.

    CAS  Google Scholar 

  • Brusseau, M. L., Wood, A. L., and Rao, P. S. C. (1991b). “Influence of organic cosolvents on the sorption kinetics of hydrophobic organic contaminants.” Environ. Sci. Technol., 25, 903–912.

    CAS  Google Scholar 

  • Carroll, K. M., Harkness, M. R., Bracco, A. A., and Balcarcel, R. R. (1994). “Application of a permeant/polymer diffusion model to the desorption of polychlorinated biphenyls from Hudson River sediments.” Environ. Sci. Technol., 28(2), 253–258.

    Article  CAS  Google Scholar 

  • Culver, T. B., Hallisey, S. P., Sahoo, D., Deitsch, J. J., and Smith, J. A. (1997). “Modeling the desorption of organic contaminants from long-term contaminated soil using distributed mass transfer rates.” Environ. Sci. Technol., 31(6), 1581–1588.

    Article  CAS  Google Scholar 

  • Cunningham, J. A., Werth, C. J., Reinhard, M., and Roberts, P. V. (1997). “Effects of grain-scale mass transfer on the transport of volatile organics through sediments.” Water Resour. Res., 33(12), 2713–2726.

    Article  CAS  Google Scholar 

  • Deitsch, J. J., and Smith, J. A. (1995). “Effect of Triton X-100 on the rate of trichloroethene desorption from soil to water.” Environ. Sci. Technol., 29(4), 1069–1080.

    CAS  Google Scholar 

  • Deitsch, J. J., and Smith, J. A. (1999). “Comparison of 1,2-DCB sorption and desorption rates for apeat soil.” Environ. Toxicol. Chem., 18(8), 1701–1709.

    Article  CAS  Google Scholar 

  • Deitsch, J. J., Smith, J. A., Arnold, M. B., and Bolus, J. (1998). “Sorption and desorption rates of carbon tetrachloride and 1,2-dichlorobenzene to three organobentonites and a natural peat soil.” Environ. Sci. Technol., 32, 3169–3177.

    Article  CAS  Google Scholar 

  • DiCesare, D., and Smith, J. A. (1994). “Effects of surfactants on the desorption rate of nonionic organic compounds from soil to water.” Rev. Environ. Contamin. Toxicol., 134, 1–29.

    CAS  Google Scholar 

  • Edwards, D. A., Adeel, Z., and Luthy, R. G. (1994). “Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system.” Environ. Sci. Technol., 28(8), 1550–1560.

    CAS  Google Scholar 

  • EPA. (1995). “In situ remediation technology status report: surfactant enhancements.” EPA542-K-94-003, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.

    Google Scholar 

  • Farrell, J., and Reinhard, M. (1994). “Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions. 2. Kinetics.” Environ. Sci. Technol., 28, 63–72.

    CAS  Google Scholar 

  • Harmon, T. C., and Roberts, P. V. (1994). “Comparison of intraparticle sorption and desorption rates for a halogenated alkene in a sandy aquifer material.” Environ. Sci. Technol., 28, 1650–1660.

    Article  CAS  Google Scholar 

  • Huang, W., and Weber, W.J. Jr. (1997). “A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains.” Environ. Sci. Technol., 31(9), 2562–2569.

    Article  CAS  Google Scholar 

  • Kan, A. T., Fu, G., Hunter, M. A., and Tomson, M. B. (1997). “Irreversible adsorption of naphthalene and tetrachlorobiphenyl to Lula and surrogate sediments.” Environ. Sci. Technol., 31(8), 2176–2185.

    Article  CAS  Google Scholar 

  • Kan, A. T., Fu, G., and Tomson, M. B. (1994). “Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction.” Environ. Sci. Technol., 28, 859–867.

    Article  CAS  Google Scholar 

  • Kile, D. E., and Chiou, C. T. (1989). “Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration.” Environ. Sci. Technol., 23(7), 832–838.

    Article  CAS  Google Scholar 

  • Ko, S.-o., Schlautman, M. A., and Carraway, E. R. (1998). “Partitioning of Hydrophobic Organic Compounds to Sorbed Surfactants. 1. Experimental Studies.” Environ. Sci. Technol., 32(18), 2769–2775.

    CAS  Google Scholar 

  • LeBoeuf, E. J., and Weber, W.J. Jr. (1997). “A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: Discovery of a humic acid glass transition and an argument for a polymer-based model.” Environ. Sci. Technol., 31(6), 1697–1702.

    Article  CAS  Google Scholar 

  • Mackay, D. M., and Cherry, J. A. (1989). “Groundwater contamination: Pump-and-treat remediation.” Environ. Sci. Technol., 23, 630–636.

    Article  CAS  Google Scholar 

  • Noordman, W. H., Ji, W., Brusseau, M. L., and Janssen, D. B. (1998). “Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil.” Environ. Sci. Technol., 32(12), 1806–1812.

    Article  CAS  Google Scholar 

  • Pavlostathis, S. G., and Mathavan, G. N. (1992). “Desorption kinetics of selected volatile organic compounds from field contaminated soils.” Environ. Sci. Technol., 26, 532–538.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., and Xing, B. (1996). “Mechanisms of slow sorption of organic chemicals to natural particles.” Environ. Sci. Technol., 30(1), 1–11.

    Article  CAS  Google Scholar 

  • Sahoo, D., and Smith, J. A. (1997). “Enhanced trichloroethene desorption from long-term contaminated soil using Triton X-100 and pH increases.” Environ. Sci. Technol., 31(7), 1910–1915.

    Article  CAS  Google Scholar 

  • Sahoo, D., Smith, J. A., Imbrigiotta, T. E., and McLellan, H. M. (1998). “Surfactant-enhanced remediation of a trichloroethene (TCE) contaminated aquifer: II. Transport of TCE.” Environ. Sci. Technol., 32(11), 1686–1693.

    Article  CAS  Google Scholar 

  • Smith, J. A., Tuck, D. M., Jaffé, P. R., and Mueller, R. T. (1991). “Effects of surfactants on the mobility of nonpolar organic contaminants in porous media.” Organic Substances and Sediments in Water, R. Baker, ed., Lewis Publishers, Chelsea, Michigan, 201–230.

    Google Scholar 

  • Sun, S., Inskeep, W. P., and Boyd, S. A. (1995). “Sorption of nonionic organic compounds in soil-water systems containing a micelle-forming surfactant.” Environ. Sci. Technol., 29(4), 903–913.

    CAS  Google Scholar 

  • Tiehm, A., Stieber, M., Werner, P., and Frimmel, F. H. (1997). “Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil.” Environ. Sci. Technol., 31, 2570–2576.

    Article  CAS  Google Scholar 

  • Vigon, B. W., and Rubin, A. J. (1989). “Practical considerations in the surfactant-aided mobilization of contaminants in aquifers.” J. Water Poll. Control Feder., 61(7), 1233–1240.

    CAS  Google Scholar 

  • Weber, W.J. Jr., and Young, T. M. (1997). “A distributed reactivity model for sorption by soils and sediments. 6. Mechanistic implications of desorption under supercritical fluid conditions.” Environ. Sci. Technol., 31(6), 1686–1691.

    Article  CAS  Google Scholar 

  • Xing, B., and Pignatello, J. J. (1997). “Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter.” Environ. Sci. Technol., 31, 792–799.

    CAS  Google Scholar 

  • Yeom, I. T., Ghosh, M. M., and Cox, C. D. (1996). “Kinetic aspects of surfactant solubilization of soil-bound polycyclic aromatic hydrocarbons.” Environ. Sci. Technol., 30(5), 1589–1595.

    Article  CAS  Google Scholar 

  • Yeom, I. T., Ghosh, M. M., Cox, C. D., and Robinson, K. G. (1995). “Micellar solubilization of polynuclear aromatic hydrocarbons in coal tar-contaminated soils.” Environ. Sci. Technol., 29, 3015–3021.

    CAS  Google Scholar 

  • Young, T. M., and Weber, W.J. Jr. (1995). “A distributed reactivity model for sorption by soils and sediments. 3. Effects of diagenetic processes on sorption energetics.” Environ. Sci. Technol., 29(1), 92–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Deitsch, J.J., Rockaway, E.J. (2002). Surfactant-enhanced Desorption of Organic Pollutants from Natural Soil. In: Smith, J.A., Burns, S.E. (eds) Physicochemical Groundwater Remediation. Springer, Boston, MA. https://doi.org/10.1007/0-306-46928-6_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-46928-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46569-7

  • Online ISBN: 978-0-306-46928-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics