Skip to main content

Interaction of Sodium Polyacrylate with Octacalcium Phosphate

  • Chapter
Advances in Crystal Growth Inhibition Technologies
  • 454 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier Sci., The Neitherlands (1994).

    Google Scholar 

  2. G. Graham and P.W. Brown, Reactions of octacalcium phosphate to form hydroxyapatite, J. Crystal Growth 165:106 (1996).

    CAS  Google Scholar 

  3. G.H. Nancollas, Biological Mineralization and Demineralization, Dahlem Konferenzen, Springer-Verlag, Berlin (1982).

    Google Scholar 

  4. R.A. Terpstra and P. Bennema, Crystal morphology of octacalcium phosphate: theory and observation, J. Cryst. Growth 82:416 (1987)

    Article  CAS  Google Scholar 

  5. M.U. Nylen, E.D. Evans and K.A. Omnel, Crystal growth in rat enamel, J. Cell. Biol. 18: 109 (1963).

    Article  CAS  Google Scholar 

  6. P. Bodier-Houllé, P. Steuer, JC. Voegel and F.J.C. Cuisinier, First experimental evidence for human dentine crystal formation involving conversion of octacalcium phosphate to hydroxyapatite, Acta Cryst. D54: 1377 (1998).

    Google Scholar 

  7. D.G.A. Nelson and J.C. Barry, High resolution electron microscopy of nonstoichiometric apatite crystals, Anat. Rec. 224:265 (1989).

    Article  CAS  Google Scholar 

  8. W.E. Brown, J.P. Smith, J.R. Lehr and A.W. Frazier, Octacalcium phosphate and hydroxyapatite, Nature 196:1048 (1962).

    CAS  Google Scholar 

  9. B.B. Tomazic, M.S. Tung, T.M. Gregory and W.E Brown, Mechanism of hydrolysis of octacalcium phosphate, Scanning Microsc. 3: 119 (1989).

    CAS  Google Scholar 

  10. J. Zhang and G.H. Nancollas, Kinetics and mechanisms of octacalcium phosphate dissolution at 37°C, J. Phys. Chem. 96:5478 (1992).

    CAS  Google Scholar 

  11. M. lijima, H. Tohda, H. Suzuki, T. Yanagisawa and Y. Moriwaki, Effect of F-on apatite octacalcium phosphate intergrowth and crystal morphology in a model system of tooth enamel formation, Calcif. Tissue Int. 50:357 (1992).

    Google Scholar 

  12. A. Bigi, M. Gazzano, A. Ripamonti and N. Roveri, Thermal conversion of octacalcium phosphate into hydroxyapatite, J. Inorg. Biochem. 32:251 (1988).

    Article  CAS  Google Scholar 

  13. R.Z. LeGeros, G. Daculsi, I. Orly, T. Abergas and W. Torres, Solution-mediated transformation of octacalcium phosphate (OCP) to apatite, Scanning Electron Microsc. 3: 129 (1989).

    CAS  Google Scholar 

  14. B.B. Tomazic, I. Mayer and W.E. Brown, Ion incorporation into octacalcium phosphate hydrolyzates, J. Cryst. Growth 108:670 (1991).

    Article  CAS  Google Scholar 

  15. M. Iijima, H. Kamemizu, N. Wakamatsu, T. Goto, Y. Doi and Y. Moriwaki, Effects of CO32− ion on the formation of octacalcium phosphate at pH 7.4 and 37°C, J. Crystal Growth 135:229 (1994).

    CAS  Google Scholar 

  16. M. Iijima, K. Iijima, I. Moriwaki and Y. Kuboki, Oriented growth of octacalcium phosphate crystals on type I collagen fibrils under physiological conditions, J. Crystal Growth 140:91 (1994).

    CAS  Google Scholar 

  17. Y. Moriwaki, Y. Doi, T. Kani, T. Aoba, J. Takahashi, M. Okazaki, Synthesis of enamel-like apatite at physiological temperature and pH using ion-selective membranes, in Mechanisms of Tooth Enamel Formation, S. Suga, ed., Quintessence Publishing Co, Tokyo (1983).

    Google Scholar 

  18. M. Iijima, H. Tohda and Y. Moriwaki, Growth and lamellar mixed crystals of octacalcium phosphate and apatite in a model system of enamel formation, J. Crystal Growth 116:319 (1992).

    CAS  Google Scholar 

  19. V.K. Sharma, M. Johnsson, J.D. Sallis and G.H. Nancollas, Influence of citrate and phosphocitrate on the crystallization of octacalcium phosphate, Langmuir 8:676 (1992).

    Article  CAS  Google Scholar 

  20. M. Markovic, B.O. Fowler and W.E. Brown, Octacalcium phosphate carboxylates. 5. Incorporation of excess succinate and ammonium ions in the octacalcium phosphate succinate structure, in Hydroxyapatite and Related Materials, P.W. Brown and B. Constantz, eds., CRC Press, Boca Raton (1994).

    Google Scholar 

  21. R.Z. LeGeros, R. Kijkovska and J.P. LeGeros, Formation and transformation of octacalcium phosphate, OCP: a preliminary report, Scanning Electron Microscopy 4:1771 (1984).

    Google Scholar 

  22. M.H. Salimi, J.C. Heughebeart and J.H. Nancollas, Crystal growth of calcium phosphates in the presence of magnesium ions, Langmuir 1: 119 (1985).

    Article  CAS  Google Scholar 

  23. I.Y. Pieters, E.A.P. De Maeyer and R.M.H. Verbeeck, Stoichiometry of K+ and CO32− containing apatites prepared by the hydrolysis of octacalcium phosphate, Inorg. Chem. 35:579 1(1996).

    Article  CAS  Google Scholar 

  24. R.Z. Le Geros, Variations in the crystalline components of human dental calculus: I. Crystallographic and spectroscopic methods of analysis, J. Dent. Res. 53:45 (1974).

    Google Scholar 

  25. D.W. Holcomb and R.A. Young, Thermal decomposition of human tooth enamel, Calcif Tissue Int. 31:189 (1980)

    CAS  Google Scholar 

  26. M.S. Tung and W.E. Brown, The role of octacalcium phosphate in subcutaneous heterotopic calcification, Calcif Tissue Int. 37:329 (1985).

    CAS  Google Scholar 

  27. H.A. Lowenstam and S. Weiner, On Biomineralization, Oxford University Press, Oxford (1989).

    Google Scholar 

  28. L. Addadi, J. Moradian-Oldak, H. Füredi-Milhofer, S. Weiner and A. Veis, Stereochemical aspects of crystal regulation in calcium phosphate-associated mineralized tissues, in Chemistry and biology of mineralizedtissues, H. Slavkin and P. Price, eds., Elsevier Science Publ., The Netherlands (1992).

    Google Scholar 

  29. S.I. Stupp and G.W. Ciegler, Organoapatites: materials for artificial bone. 1. Synthesis and microstructure, J. Biomed. Mater. Res. 26: 169 (1992).

    Article  CAS  Google Scholar 

  30. E. Bertoni, A. Bigi, G. Cojazzi, M. Gandolfi, S. Panzavolta, N. Roveri, Nanocrystals of magnesium and fluoride substituted hydroxyapatite, J. Inorg. Biochem. 72:29 (1998).

    Article  CAS  Google Scholar 

  31. E. Bertoni, A. Bigi, G. Falini, S. Panzavolta and N. Roveri, Hydroxyapatite/polyacrylic acid composite nanocrystals, J. Mater. Chem., 9:779 (1999).

    Article  CAS  Google Scholar 

  32. D.N. Misra, Adsorption of polyacrylic acids and their sodium salts on hydroxyapatite: effect of their relative molar mass, J Colloid Interface Sci., 18 1:289 (1996)

    Google Scholar 

  33. A. Bigi, E. Boanini, M. Borghi, G. Cojaui, S. Panzavolta, N. Roveri, Synthesis and hydrolysis of octacalcium phosphate: effect of sodium polyacrylate, J. Inorg. Biochem. 75: 145 (1999)

    Article  CAS  Google Scholar 

  34. M. Mathew, W.E. Brown, L.W. Schroeder and B. Dickens, Crystal structure of octacalcium bis(hydrogenphosphate) tetrakis(phosphate)pentahydrate, Ca8(HPO4)2(PO4)4·5H2O, J. Cryst. Spectrosc. Res. 18:235 (1988).

    CAS  Google Scholar 

  35. L. E. Alexander, X-ray diffraction methods in polymer science, Wiley-Interscience, New York (1969).

    Google Scholar 

  36. A. Bigi, E. Boanini, G. Falini, S. Panzavolta, N. Roveri, Effect of sodium polyacrylate on the hydrolysis of octacalcium phosphate, submitted for publication

    Google Scholar 

  37. Q. Liu, J.R. de Wijn and C.A. van Blitterswjik, Nano-apatite/polymer composites: mechanical and physicochemical characteristics, Biomaterials 18: 1253 (1997).

    Article  Google Scholar 

  38. D. Belton and S.I. Stupp, Adsorption of ionizable polymers on ionic surfaces: poly(acrylic acid), Macromolecules 16:1143 (1983).

    Article  CAS  Google Scholar 

  39. F.J.G. Cuisinier, P. Steuer, A. Brisson and J.C. Voegel, High resolution electron microscopy study of crystal growth mechanisms in chicken bone composites, J. Cyst. Growth 156:443 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bigi, A., Boanini, E., Cojazzi, G., Falini, G., Panzavolta, S., Roveri, N. (2002). Interaction of Sodium Polyacrylate with Octacalcium Phosphate. In: Amjad, Z. (eds) Advances in Crystal Growth Inhibition Technologies. Springer, Boston, MA. https://doi.org/10.1007/0-306-46924-3_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-46924-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46499-7

  • Online ISBN: 978-0-306-46924-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics