Skip to main content

Rational Development of New Cooling Water Chemical Treatment Programs for Scale and Microbial Control

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cowan, J.C.; Weintritt, D.J. Water-Formed Scale Deposits, Gulf Publishing Co. Houston, TX, 1976, p. 93.

    Google Scholar 

  2. Pilson, M.E.Q. An Introduction to the Chemistry of the Sea, Prentice Hall, Upper Saddle River, NJ, 1998, p. 123.

    Google Scholar 

  3. F.N. Kemmer, The Nalco Water Handbook, McGraw-Hill Company, New York (1988)

    Google Scholar 

  4. J. Katzel, Fundamentals of cooling towers, Plant Engineering April 27:32 (1989).

    Google Scholar 

  5. E.C. Elliot, Cooling towers, Power December:S-1 (1985).

    Google Scholar 

  6. C.R. Branan, Rules of Thumb for Chemical Engineers, Gulf Publishing Co. Houston, TX, 1994, p. 127.

    Google Scholar 

  7. Sarig, S.; Ginio, O. A mechanism for retarded precipitation based on the time evolution of particle size and relative number density, J. Phys. Chem. 80:256 (1976).

    Article  CAS  Google Scholar 

  8. Koutsoukos, P.G.; Kontoyannis, C.G. Precipitation of calcium carbonate in aqueous solution, J. Chem. Soc. Faraday Trans.I 80: 1181 (1984).

    Article  CAS  Google Scholar 

  9. Spanos, N.; Koutsoukos, P.G. Kinetics of precipitation of calcium carbonate in alkaline pH at constant supersaturation. Spontaneous and seeded growth, J. Phys. Chem. B 102:6679 (1998).

    Article  CAS  Google Scholar 

  10. Oddo, J.E.; Tomson, M.B., Why scale forms and how to predict it, SPE Production & Facilities February:47 (1994).

    Google Scholar 

  11. Johnson, C.K. ORTEP: A fortran thermal ellipsoid plot program; Technical Report ORNL-5138; Oak Ridge National Laboratory: Oak Ridge, T.N, 1976.

    Google Scholar 

  12. Gabe, E.J.; Le Page, Y.; Charland, J.-P.; Lee, F.L.; White, P.S., NRCVAX-an interactive program system for structure analysis, J. Appl. Crystallogr. 22:384 (1989).

    Article  CAS  Google Scholar 

  13. Reed, D.T.; Nass, R. Small-scale short-term methods of evaluating cooling tower treatments-are they worthwhile?, International Water Conference 1975, paper # 1.

    Google Scholar 

  14. Fulks, K.E.; Yeoman, A.M., Performance evaluation of non-metal cooling water treatments, Corrosion/83, Paper No. 279, National Association of Corrosion Engineers, Houston, TX, 1983.

    Google Scholar 

  15. Hale, E.R.; Hoots, J.E.; Nicolich, S.N., Tracers track down water problems, Power Engineering September:21 (1999).

    Google Scholar 

  16. Reis, A.H. Jr.; Peterson, S.W.; Dryan, M.E.; Gebert, E.; Mason, G. W.; Peppard, D.F., Sterically hindered extractants. 2. A neutron-difiaction study of the di-tert-butylphosphinic acid dimer showing strong asymmetric hydrogen bonding, Inorg. Chem. 15:2748 (1976).

    CAS  Google Scholar 

  17. Smith, P.H.; Raymond, K.N., Solid-state and solution chemistry of calcium N-(phosphonomethyl)glycinate, Inorg. Chem. 27: 1056 (1988).

    CAS  Google Scholar 

  18. Langley, K.J.; Squattrito, P.J.; Adani, F.; Montoneri, E., Structures of fluorobenzylphosphonic acid isomers and their calcium salts, Inorg. Chim. Acta 253:77 (1996).

    Article  CAS  Google Scholar 

  19. DeLaMatter, D.; McCullough, J.J.; Calvo, C., Crystal structure of methylenediphosphonic acid, J. Phys. Chem. 77:1146 (1973).

    Article  CAS  Google Scholar 

  20. Gebert, E.; Reis, A.H. Jr.; Dryan, M.E.; Peterson, S.W.; Mason, G.W.; Peppard, D.F., Structural investigations of unsubstituted polymethylenediphosphonic acids 2. The molecular and crystal structure of propane-1,3-diphosphonic acid, J. Phys. Chem. 81:471 (1977).

    Article  CAS  Google Scholar 

  21. Uchtman, V.A.; Gloss, R.A., Structural investigations of calcium binding molecules. I. The crystal and molecular structures of HEDP.H2O, J. Phys. Chem. 76:1298 (1972).

    CAS  Google Scholar 

  22. Uchtman, V.A., Structural investigations of calcium binding molecules. II. The crystal and molecular structures of calcium-HEDP.2H2O; Implications for polynuclear complex formation, J. Phys. Chem. 76:1304 (1972).

    CAS  Google Scholar 

  23. Nardelli, M.; Pelizzi, G.; Staibano, G.; Zucchi, E., A structural study on metal binding of gem-diphosphonates, bonegrowth regulators, Inorg. Chim. Acta 80:259 (1983).

    Article  CAS  Google Scholar 

  24. Mathew, M.; Fowler, B.O.; Breuer, E.; Golomb, G.; Alferiev, IS; Eidelman, N., Synthesis, characterization, and crystal structure of dicalcium glutarylbis(phosphonate) dihydrate: a covalently pillared layer structure with the potential for epitaxial growth on hydroxyapatite, Inorg. Chem. 37:5485 (1998).

    Article  Google Scholar 

  25. Räsänen J.P.; Pohjala, E.; Nikander, H.; Pakkanen, T.A., Ab initio studies on organophosphorous compounds. 6. Interactions of dimethylphosphinic and dimethyl-phosphinothioic acid monoanions and methylenebisphosphonic acid dianion with calcium, J. Phys. Chem. A 101:5196 (1997), and references therein.

    Google Scholar 

  26. Davis, R.V.; Carter, P.W.; Kamrath, M.A.; Johnson, D.A.; Reed, P.E. The use of modem methods in the development of calcium carbonate inhibitors for cooling water systems, in Mineral Scale Formation and Inhibition, Amjad, Z., ed., Plenum Press, New York (1995, p. 33.

    Google Scholar 

  27. Charpin, P.P.; Lance, M.; Nierlich, M.; Viper, D.; Lee, M.-R.; Silvestre, J.-P.; Dao, N.Q., Structure du Trihydrogéno hydroxy-1-ethanedi(phosphonate)-1, 1 de rubidium dihydrate, Acta Crystallog. Sect. C Cryst. Struct. Comm. C44:990 (1988).

    CAS  Google Scholar 

  28. Vanderpool, D., New calcium carbonate scale inhibitors: understanding complexation constants as a tool for finding improved performance, International Water Conference, paper # 40, p. 383 (1997).

    Google Scholar 

  29. Carter, R.P.; Carrol, R.L.; Irani, R.R., Nitrilotris(methylenephosphonic acid), ethyliminodi-(methylenephosphonic acid) and diethylaminomethylenephosphonic acid: acidity and calcium(II) and magnesium(II) complexing, Inorg. Chem. 6:939 (1967).

    CAS  Google Scholar 

  30. Deluchat, V.; Bollinger, J-C.; Serpaud, B.; Caullet, C., Divalent cations speciation with three phosphonate ligands in the pH-range of natural waters, Talanta 44:397 (1997).

    Article  Google Scholar 

  31. Oddo, J.E.; Tomson, M.B., The solubility and stoichiometry of calcium-diethylenetriaminepenta(methylene phosphonate) at 70° C in brine solutions at 4.7 and 5.0 pH, Applied Geochem. 5:527 (1990).

    CAS  Google Scholar 

  32. Sawada, K.; Araki, T.; Suzuki, T., Complex formation of amino polyphosphonates. 1. Potentiometric and nuclear magnetic resonance studies of nitrilotris(methylenephosphonato) complexes of the alkaline-earth-metal ions, Inorg. Chem. 26:1199 (1987).

    Article  CAS  Google Scholar 

  33. Kabachnik, M.I.; Medved, T.Y.; Dyatlova, N.M. Rudomino, M.V. Russ. Chem. Rev. 1974, 43, 733.

    Article  Google Scholar 

  34. Matty, J.M.; Tomson, M.B., Effect of multiple precipitation inhibitors on calcium carbonate scale nucleation, Appl. Geochem. 3549 (1988).

    Google Scholar 

  35. Tomson, M.B., Effect of precipitation inhibitors on calcium carbonate scale formation, J. Cryst. Growth 62:106 (1983).

    Article  CAS  Google Scholar 

  36. Ferguson, R.J.; Freedman, A.J.; Fowler, G.; Kulik, A.J.; Robson, J.; Weintritt, D.J., The practical application of ion association model saturation indices to commercial water treatment problem solving, in Mineral Scale Formation and Inhibition, Amjad, Z., ed., Plenum Press, New York (1995), p. 323.

    Google Scholar 

  37. Johnson, D.A.; Fulks, K.E.; Meier, D.A., Factors influencing the decomposition of HEDP by chlorine, Corrosion/86, Paper No. 403, National Association of Corrosion Engineers, Houston, TX, 1986.

    Google Scholar 

  38. Bartholomew, R.D., Bromine-based biocides for cooling water systems: a literature review, International Water Conference, paper # 74, p. 523 (1998).

    Google Scholar 

  39. Vaska, M.; Go, W., Microbial control. Evaluation of alternatives to gaseous chlorine for cooling water, Industrial Water Treatment March/April:39 (1993).

    Google Scholar 

  40. Berg, D.; Vanderpool, D.; Rubin, D., Ion chromatographic analysis of organophosphonates in cooling water, International Water Conference, paper # 7, p. 56 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Demadis, K.D., Yang, B., Young, P.R., Kouznetsov, D.L., Kelley, D.G. (2002). Rational Development of New Cooling Water Chemical Treatment Programs for Scale and Microbial Control. In: Amjad, Z. (eds) Advances in Crystal Growth Inhibition Technologies. Springer, Boston, MA. https://doi.org/10.1007/0-306-46924-3_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-46924-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46499-7

  • Online ISBN: 978-0-306-46924-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics