Skip to main content

Summary of Recent Results Obtained from Using the Controlled Fluidised Bed Agglomeration Method

  • Chapter
  • 1889 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atakul, H., and Ekinci, E. (1989). “Agglomeration of Turkish lignites in fluidized-bed combustion.” J. Inst. of Energy, March, 56.

    Google Scholar 

  • Barnhart, D. H., and Williams, P. C. (1956). “The sintering test-An index to ash fouling tendency.” Trans. ASME, 78, 1229.

    Google Scholar 

  • Basu, P., and Sarkar, A. (1983). “Agglomeration of coal ash in fluidized beds.” Fuel, 62, 924.

    Article  Google Scholar 

  • Benson, S. A., Karner, F. R., Goblirsch, G. M., and Brekke, D. W. (1982). “Bed agglomerates formed by atmospheric fluidized-bed combustion of a North Dacota Lignite.” Proc. of the 183rd Nat. ACSM, Div. Fuel Chem., 27, 174.

    Google Scholar 

  • Bergman, A. G., Kislova, A. 1., and Posypiako, V. I. (1954). “System K2Cl2-K2SO4Zh. Obshch. Khim., 24, 1722.

    Google Scholar 

  • Blander, M., Milne, T., Dayton, D., Backman, R., Blake, D., Kuhnel, V, Linak, W, Mann, M., Nordin, A., and Ljung, A. (1997). “Equilibrium chemistry of the combustion of biomass: a round robin set of calculations using available computer programs and data bases.” Proc. Eng. Found. Ash Conf. Kona Hawaii.

    Google Scholar 

  • Bruce, K., and Bitowft, B. S. (1988). “A generic study of the sintering aspects of biomass in a fluid-bed gasifier.” Energy Biomass Wastes, 11, 511.

    Google Scholar 

  • Coin, C., Kahraman, H., and Peifenstein, A. P. (1995). “An improved ash fusion test.” Applications of Advanced Technology to Ash-Related Problems in Boilers, Ed. Baxter, L. Desollar, R.. 187–200.

    Google Scholar 

  • Conn, R. E., and Austin, L. G. (1984). “Studies of sintering of coal ash relevant to pulverized coal utility boilers.” Fuel, 63, 1664.

    Article  Google Scholar 

  • Conn, R. E., and Jones, M. L. (1984). Eng. Found. Conf., Copper Mountain, Colorado.

    Google Scholar 

  • Cumming, I. W., Joyce, W. I., and Kyle, J. H. (1985). “Advanced techniques for the assessment of slagging and fouling propensity in pulverized coal fired power plant.” J. Inst. Energy., 58.

    Google Scholar 

  • Dawson, M. R., and Brown, R. C. (1992). “Bed material cohesion and loss of fluidization during fluidized bed combustion of midwestern coal.” Fuel, 71, 585.

    Article  Google Scholar 

  • Ergudenler, A., and Ghaly, A. E. (1993). “Agglomeration of silica sand in a fluidized bed gasifier operating on wheat straw.” Biomass and Bioenergy, 4, 135.

    Article  Google Scholar 

  • Gerald, P. H., Huggins, F. E., and Dunmyre, G. R. (1981). “Investigation of the high-temperature behavior of coal ash in reducing and oxidising atmospheres.” Fuel, 60, 585.

    Google Scholar 

  • Ghaly, A. E., Ergüdenler, A., and Laufer, E. (1993). “Agglomeration characteristics of alumina and sand-straw ash mixtures at elevated temperatures.” Biomass and Bioenergy, 5, 467.

    Google Scholar 

  • Ghaly, A. E., Ergüdenler, A., and Laufer, E. (1994). “Study of agglomeration characteristics of silica sand-straw ash mixtures using scanning electronic microscopy and energy dispersion x-ray techniques.” Bioresource Technology, 48, 127.

    Article  Google Scholar 

  • Gibson, J. R., and Livingston, W. R. (1991). “The sintering and fusion of bituminous coal ashes.” Eng. Found. Conf. Inorganic Transformations and Ash Deposition During Coal Combustion, 425–447 Palm Coast Florida.

    Google Scholar 

  • Gluckman, M. J., Yerushalmi, J., and Squires, A. M. (1976). “Defluidizalion characteristics of sticky or agglomerating beds.” Fluidization Technology, 2, 395.

    Google Scholar 

  • Goblirsch, G. M., Benson, S. A., Karner, F. R., Rindt. D. K., and Hajicek, D. R. (1983). “AFBC bed material performance with low-rank coals.” Proc. of the 12th biennial lignite symp., May 18–19, Grand Forks, DOE/FE/60181-5.

    Google Scholar 

  • Goblirsch, G., Vander Molen, R. H., Wilson, K., and Hajicek, D. (1980). “Atmospheric Fluidized bed combustion testing of North Dakota Lignite”. Proc. of the 6th Int. Conf. Fluidized Bed Combustion, 2, 850.

    Google Scholar 

  • Hastie, J. W., and Bonell, W. (1985). “A predictive phase equilibrium model for multi component oxide mixtures.” High Temp. Sci., 19, 275.

    Google Scholar 

  • Huang, C. H. (1985). “Fundamentals of agglomeration in a fluidized bed.” Thesis, Illinois Inst. Techn.

    Google Scholar 

  • Huffman, G. P., and Huggins, F. E. (1983). “Investigation of partial ash melting by phase analysis of quenched samples”. In Fouling and slagging resulting from impurities in combustion gases, Engineering Foundation, 259–279, New York.

    Google Scholar 

  • Huggins, F. E., Deborah, A. K., and Gerald, P. H. (1981). “Correlation between ash fusion temperatures and ternary equilibrium phase diagrams.” Fuel, 60, 577.

    Article  Google Scholar 

  • Kline, S. D., Mason, D. M., Carty, R. H., and Babu, S. F. (1990). “The effect of limestone on ash behavior in fluidized-bed gasification of coal”. Proc. of utilization of high sulphur coals III, Elsevier Science., 687.

    Google Scholar 

  • Latva-Somppi, J., Kauppinen, E. I., Kurkela, J., Öhman, M., Nordin, A., and Johanson, B. (1997) “Ultrafine ash particle formation during waste sludge incineration in fluidized bed reactors.” Proc. of AAAR97.

    Google Scholar 

  • Le Pori, W. A., Anthony, R. G., Lalk, T. R., and Craig, J. D. (1980). “Fluidized bed combustion and gasification of biomass.” Agricultural Energy, 2, 330.

    Google Scholar 

  • Manzoori, A. R. (1990). “Role of inorganic matter in agglomeration and defluidization during the circulating fluidized bed combustor.” Thesis, University of Adelaide.

    Google Scholar 

  • Manzoori, A. R., and Agarwal, P. K. (1994). “Agglomeration and defluidization under simulated circulating fluidized bed combustion conditions.” Fuel, 73, 563.

    Article  Google Scholar 

  • Nicholls, P., and Reid, W. T. (1940). “Viscosity of coal ash slags.” Trans. ASME 62(1), 141.

    Google Scholar 

  • Natarajan, E., Öhman, M., Gabra, M., Nordin, A., Liliedahl, T. and Rao, A. N. (1998) “Experimental determination of bed agglomeration tendencies of some common agricultural residues in fluidized bed combustion and gasification.” Biomass and Bioenergy, 15, 163–169.

    Article  Google Scholar 

  • Nordin, A., Dayton, D., French, R., and Milne, T. (1997). Literature review of previous work on alkali metals in combustion systems. Report to be published.

    Google Scholar 

  • Nordin, A. (1994). “Chemical elemental characteristics of biomass fuels.” Biomass and Bioenergy, 6, 339.

    Article  Google Scholar 

  • Nordin, A, and Levepln, P. (1997). “Ash related problems in biomass fired boilers.” Thermal Engineering Research Foundation, Report no. 607. (In Swedish)

    Google Scholar 

  • Nordin, A., Öhman, M., Skrifvars, B., J., and Hupa, M. (1995). “Agglomeration and defluidization in FBC of biomass fuels—mechanisms and measures for prevention.” Applications of Advanced Technology to Ash-Related Problems in Boilers, Ed. Baxter, L. Desollar, R., 353–366.

    Google Scholar 

  • Nowok, J. W., Benson, S. A., Jones, M. L., and Kalmanovitch, D. P (1990). Fuel, 69, 1020.

    Article  Google Scholar 

  • Padban, N., Kiuru, S., and Hallgren, A. L. (1995). “Bed material agglomeration in PFB biomass gasification.” ACSM., Div. Fuel. Chem, 40(3), 743.

    Google Scholar 

  • Raask, E. (1979). “Sintering characteristics of coal ashes by simultaneously dilatometry-electrical conductance measurements.” J. Thermal Anal., 16, 91.

    Article  Google Scholar 

  • Raask, E. (1985). Mineral Impurities in coal combustion—Behavior, problems, and remedial measures, Hemisphere Press, New York.

    Google Scholar 

  • Reid, W. T., and Cohen, P. (1944). “The flow characteristics of coal ash slags in the solidification range.” Trans. ASME 66, 83.

    Google Scholar 

  • Sage, W. L., and Mcllroy, J. B. (I960). “Relationship of coal-ash viscosity to chemical composition.” Trans. ASME 82(2), 145.

    Google Scholar 

  • Salour, D., Jenkins, B. M., Vafei, M., and Kayhaian, M. (1993). “Control of in-bed agglomeration by fuel blending in a pilot scale straw and wood fueled AFBC.” Biomass and Bioenergy, 4, 117.

    Article  Google Scholar 

  • Sandstrom, W. A., Vora, M. K., and Rehmat, A. (1979). “Recent developments in high-temperature fluidization at the ash-agglomeration pilot plant.” AICHE 72nd Annual meeting.

    Google Scholar 

  • Sanyal, A., and Cumming, I. W. (1981). “An electrical resistivity method for detecting the onset of fusion in coal ash.” US Eng. Found. Conf. Slagging and Fouling from Combustion Gases, 329.

    Google Scholar 

  • Sanyal, A., and Metha, A. K. (199.3). “Development of an electrical resistance method based on ash fusion test.” Eng. Found. Conf. Impact of Ash Deposition Coal Fired Plants, Sollihul, England.

    Google Scholar 

  • Senior, C. L., and Srinivasacher, S. (1995). “Viscosity of ash particles in combustion systems for prediction of particle sticking.” Energy & Fuels, 9, 277.

    Article  Google Scholar 

  • Siegell, J. H. (1976). “Defluidization phenomena in fluidized beds of sticky particles at high temperatures.” Thesis the City University of New York.

    Google Scholar 

  • Skrifvars, B. J. (1994). “Sintering tendency of different fuel ashes in combustion and gasification conditions.” Thesis, Åbo Akademi University.

    Google Scholar 

  • Skrifvars, B. J., Hupa, M., Moilanen, A., and Lundqvist, R. (1995). “Characterization of biomass ashes.” In Applications of Advanced technology to ash-related problems in boilers. Ed. Baxter, L.L., Waterville valley.

    Google Scholar 

  • Skrifvars, B. J., Hupa, M., Öhman, M., and Nordin, A. Accepted for publications in Energy & Fuels

    Google Scholar 

  • Slegeir, W. A., and Singletary, J. H. (1988). “How reliable are correlations between coal ash chemistry and ash fusibilities.” Proc. Int. Conf. Santa Barbara, California.

    Google Scholar 

  • Smith, E. J. D. (1956). “The sintering of fly ash.” J. Inst. Fuel, 29, 253.

    Google Scholar 

  • Soltes, B. J., Lepori, W. A., and Pollock, T. C. (1982). “Fluidized-Bed Energy Technology for Biomass Conversion.” Biotechnology and Bioengineering Symp. No. 12, 15.

    Google Scholar 

  • Sondreal, E.A., and Ellman, R. C. (1975). “Fusibility of ash from lignite and its correlation with ash composition.” U.S. Bureau of Mines Rept., GRFREC/RI-75-1, Pittsburgh.

    Google Scholar 

  • Srinivasachar, S., Helbe, J. J., Katz, C. B., and Boni, A. A. (1988). “Transformations and stickines of minerals during pulverized coal combustion.” Proc. Eng. Found. Conf. Miner. Matter Ash Deposition Coal, 210.

    Google Scholar 

  • Srinivasacher, S., Helbe, J. J., and Boni, A. A. (1990). Twenty-Third Symposium (International) on Combustion; The Combustion Institute, 1305, Pittsburgh.

    Google Scholar 

  • Stallman, J. J., and Neavel, R. C. (1980). “Technique to measure the temperature of agglomeration of coal ash.” Fuel, 59, 584.

    Google Scholar 

  • Urbain, G., and Boiret, M. (1990). “Viscosities of liquid silicates.” Ironmaking and Steel making, 17, 255.

    Google Scholar 

  • Wall, T. F., Gupta, R. P., Polychronadis, P., Ellis, G. C., Ledger, R. C., and Lindner, E. R., (1989). “The strength, sintering, electrical conductance and chemical character of coal ash deposits.” NERDDC Project No. 1181—Final report, Vol. I, Summary Report.

    Google Scholar 

  • Wall, T. F, Creelman, R. A., Gupta, R. P., Gupta, S., Coin, C., and Lowe, A. (1995). “Coal ash fusion temperatures: new characterization techniques and associations with phase equilibria.” Applications of Advanced Technology to Ash-Related Problems in Boilers, Ed. Baxter, L. Desollar, R., 541–556.

    Google Scholar 

  • West, S. S., Williamson, J., and Laughlin, M. K. (1993). “Mineral interactions during fluidized bed gasification of coals.” Proc. of the Eng. Foundation Conf., “The impact of ash deposition on coal fired plants”, Solihull, Birmingham.

    Google Scholar 

  • Wibberley, L. J., and Wall, T. F. (1982). “Alkali ash reactions and deposit formation in pulverized-coal-fired-boilers.” Fuel, 61, 93.

    Google Scholar 

  • Winegartner, E. C., and Rhodes, B. T. (1975). “An empirical study of the relation of chemical properties to ash fusion temperatures.” J. Eng. Power, 97, 395.

    Google Scholar 

  • Vassilev, S., V, Kitano, K., Takeda, S., and Tsurue, T. (1995). “Influence of mineral and chemical composition of coal ashes on their fusibility.” Fuel Processing Technology, 45, 27.

    Article  Google Scholar 

  • Vorres, K. W. J. (1979). “Effect of composition on melting behavior of coal ash.” Eng. Power, 101, 497.

    Google Scholar 

  • Öhman, M. (1997) “A new method to quantify fluidized bed agglomeration in the combustion of biomass fuels.” Licentiate Thesis, Umeå University.

    Google Scholar 

  • Öhman, M., and Nordin, A. (1996). Review of particle temperature studies in fluidized bed combustion.” Proc. Of Nordic Sem. Thermochem. Conv. of Solid Fuels, Trondheim Norway.

    Google Scholar 

  • Öhman, M., and Nordin, A. (1997). “A new method for quantification of fluidized bed agglomeration tendencies a sensitivity analysis.” Energy & Fuels, 12, 90–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Öhman, M., Nordin, A. (2002). Summary of Recent Results Obtained from Using the Controlled Fluidised Bed Agglomeration Method. In: Gupta, R.P., Wall, T.F., Baxter, L. (eds) Impact of Mineral Impurities in Solid Fuel Combustion. Springer, Boston, MA. https://doi.org/10.1007/0-306-46920-0_19

Download citation

  • DOI: https://doi.org/10.1007/0-306-46920-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46126-2

  • Online ISBN: 978-0-306-46920-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics