Skip to main content

Ultrathin PTFE, PVDF, and FEP Coatings Deposited Using Plasma-assisted Physical Vapor Deposition

  • Chapter
Fluoropolymers 1: Synthesis

Part of the book series: Topics in Applied Chemistry ((TAPP))

Conclusions

The deposition rate of PTFE varied nearly linearly with RF power density. High rates of deposition could be achieved owing to its temperature tolerance allowing higher power densities. The coatings retained PTFE-like properties with good adhesion. PVDF sputtered at rates that were nonlinear with RF power density, resulting in coatings with variable adhesion. However, at equivalent power densities, PVDF sputtered at about twice the rate of PTFE. FEP sputtered at high rates for low power densities, about four times that of PVDF for the same power density. However, low rates resulted in film degradation as evidenced by film discoloration.

This work has shown that it is possible to deposit a number of fluoropolymer films by RF magnetron sputtering by carefully controlling the rate of deposition to degree of ion bombardment during film formation. Films from 20 nm to 15 μm have been produced that are of high integrity and adherent. The fluoropolymers deposited in this study included PTFE, PVDF, and FEP; of these only PTFE had been extensively studied by RF magnetron sputtering prior to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bruce Banks, J. Mirtich, S. K. Rutledge, and D. M. Swec, Thin Sol. Films 127(1–2), 107–114 (1985).

    CAS  Google Scholar 

  2. K. A. Ryden, Proceedings of the Royal Aeronautical Society Conference on Small Satellites (1991), pp, 4.1–4.11.

    Google Scholar 

  3. I. Sugimoto and S. Miyake, Thin Sol. Films 158(1) 51–60 (1988).

    CAS  Google Scholar 

  4. N. Nakano and S. Ogawa, Sensors and Actuators B:Chemical B21(1), 51–55, (1994).

    Google Scholar 

  5. J. A. McLaughlin, D. Macken, B. J. Meenan, E. T. McAdams, and P. D. Maguire, Key Eng. Mat. 99–100, 331–338 (1995).

    Google Scholar 

  6. A. Tressuad, F. Moguet, and L. Lozano, in Proceedings of Fluorine in Coatings II, Munich, Germany, Paint Research Association, Teddington, Middlesex, UK (1997).

    Google Scholar 

  7. S. Kurosawa, D. Radloff, N. Minoura, and N. Inagaki, in Proceedings of Fluorine in Coatings II, Munich, Germany, Paint Research Association, Teddington, Middlesex, UK (1997).

    Google Scholar 

  8. H. Biederman, International Seminar on Film Preparation and Etchings by Plasma Technology, Brighton, Great Britain, (1981).

    Google Scholar 

  9. A. Cavaleiro and M. T. Vieira, Solar Energy Mat. 20(3), 245–256 (1990).

    CAS  Google Scholar 

  10. Y. Yamada, K. Tanaka, and K. Saito, Surf: Coat. Tech. 44(1–3), 618–628 (1990).

    Google Scholar 

  11. S. Ochiai, T. Katao, A. Maeda, M. Ieda, and T. Mizutani, Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, Vol. 1, IEEE, Piscataway, N.J., 94CH3311-8, (1994), pp. 215–218.

    Google Scholar 

  12. G. A. Hishmeh, T. L. Barr, A. Sklyarov, and S. Hardcastle, J. Vac. Sci. Tech. A: Vac. Surf: Films 14 (3, pt. 2) 1330–1338 (1996).

    CAS  Google Scholar 

  13. I. Sugimoti, M. Nakamura, and H. Kuwano, Thin Sol. Films 249, 118–125 (1994).

    Google Scholar 

  14. J. P. Badey, E. Urbaczewski-Espuche, Y. Jugnet, D. Sage, Duc. Tran Minh, and B. Chabert, Polymer 35(12), 2472–2479 (1994).

    Article  CAS  Google Scholar 

  15. M. J. O’Keefe and J. M. Rigsbee, J. Appl. Polym. Sci. 53(12), 1631–1638 (1994).

    CAS  Google Scholar 

  16. H. V Jansen, J. G. E. Gardeniers, J. Elders, H. A. C. Tilmans, and M. Elwenspoek, Sensors and Actuators A: Physical 41, (1–3, pt. 3) 136–140 (1994).

    Article  CAS  Google Scholar 

  17. J. Perrin, B. Despax, V Hanchett, and E. Kay, J. Vac. Sci. Tech. A: Vac., Surf: Films 4(I), 46–51 (1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lawson, K.J., Nicholls, J.R. (2002). Ultrathin PTFE, PVDF, and FEP Coatings Deposited Using Plasma-assisted Physical Vapor Deposition. In: Hougham, G., Cassidy, P.E., Johns, K., Davidson, T. (eds) Fluoropolymers 1: Synthesis. Topics in Applied Chemistry. Springer, Boston, MA. https://doi.org/10.1007/0-306-46918-9_19

Download citation

  • DOI: https://doi.org/10.1007/0-306-46918-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46060-9

  • Online ISBN: 978-0-306-46918-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics