Skip to main content

Part of the book series: Methods of Surface Characterization ((MOSC,volume 5))

Contribution of National Institute of Standards and Technology, not subject to copyright.

Sections of this chapter have appeared previously in two articles: T. V. Vorburger and G. G. Hembree, in: Navy Metrology Research & Development Program Conference Report, Naval Weapons Station, Corona, CA, April (1989); and T. V. Vorburger, J. A. Dagata, G. Wilkening, and K. Iizuka, CIRP Ann. 46/2, 597 (1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. J. Stout and E. J. Davis, Surface Topography of Cylinder Bores—The Relationship between Manufacture, Characterization and Function, Wear 95, 111–125 (1984).

    Article  Google Scholar 

  2. J. E. Willn, Characterization of Cylinder Bore Surface Finish—A Review of Profile Analysis, Wear 19, 143–162 (1972).

    Article  Google Scholar 

  3. J. C. Campbell, Cylinder Bore Surface Roughness in Internal Combustion Engines: Its Appreciation and Control, Wear 19, 163–168 (1972).

    Article  Google Scholar 

  4. H. Lackenby, Resistance of Ships, with Special Reference to Skin Friction and Hull Surface Condition, Proc. Inst. Mech. Eng. 176, 981–1013 (1962).

    Google Scholar 

  5. J. M. Bennett, D. K. Burge, J. P. Rahn, and H. E. Bennett, Standards for Optical Surface Quality Using Total Integrated Scattering, Proc. SPIE 181, 124–132 (1979).

    Google Scholar 

  6. J. A. Detrio and S. M. Miner, Standardized Total Integrated Scatter Measurements of Optical Surfaces, Opt. Eng. 40, 419–422 (1985).

    Google Scholar 

  7. T. E. Madey, The Role of Steps and Defects in Electron Stimulated Desorption: Oxygen on Stepped W(1 10) Surfaces, Surf. Sci. 94, 483–506 (1980), see references therein.

    Article  CAS  Google Scholar 

  8. T. E. Furtak, Current Understanding of the Mechanism of Surface Enhanced Raman Scattering, J. Electroanal. Chem. 150, 375–388 (1983).

    Article  CAS  Google Scholar 

  9. T. R. Thomas, ed., Rough Surfaces, Longman Group, London (1982).

    Google Scholar 

  10. J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering, Optical Society of America, Washington, DC (1989).

    Google Scholar 

  11. D. J. Whitehouse, Handbook of Surface Metrology, Institute of Physics, Bristol, UK (1994).

    Google Scholar 

  12. D. J. Whitehouse, in: Characterization of Solid Surfaces (P. E. Kane and G. R. Larrabee, eds.), Plenum Press, New York (1975), pp. 49–73.

    Google Scholar 

  13. J. M. Bennett and J. H. Dancy, Stylus Profiling Instrument for Measuring Statistical Properties of Smooth Optical Surfaces, Appl. Opt. 20, 1785–1802 (1981).

    Google Scholar 

  14. G. Breitweiser, Surface Profile Measurements—A Survey of Applications in the Area of Vacuum Deposition, J. Vac. Sci. Technol. 11, 101–105 (1974).

    Article  CAS  Google Scholar 

  15. T. V. Vorburger, F. E. Scire, and E. C. Teague, Hydrodynamic Drag versus Roughness for Rotating Disks, Wear 83, 339–349 (1982).

    Article  Google Scholar 

  16. Y. Namba and H. Tsuwa, Mechanism and Some Applications of Ultra-Fine Finishing, CIRP Ann. 27/1, 511–516 (1978).

    Google Scholar 

  17. J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, An Optical Profilometer for Surface Characterization of Magnetic Media, ASLE Trans. 27, 101–113 (1984).

    Google Scholar 

  18. E. L. Church, T. V. Vorburger, and J. C. Wyant, Direct Comparison of Mechanical and Optical Measurements of the Finish of Precision Machined Optical Surfaces, Opt. Eng. 24, 388–395 (1985).

    Google Scholar 

  19. E. L, Church and P. Z. Takacs, Survey of the Finish Characteristics of Machined Optical Surfaces, Opt. Eng. 24, 396–403 (1985).

    Google Scholar 

  20. J. M. Bennett, Comparison of Techniques for Measuring the Roughness of Optical Surfaces, Opt. Eng. 24, 380–387 (1985).

    Google Scholar 

  21. S. Tolansky, Multiple-Beam Interference Microscopy of Metals, Academic Press, London (1970).

    Google Scholar 

  22. M. Sternheim, W. vanGelder, and A. W. Hartman, A Laser Interferometer System to Monitor Dry Etching of Patterned Silicon, J. Electrochem. Soc. 130, 655–658 (1983).

    CAS  Google Scholar 

  23. R. Young, J. Ward, and F. Scire, The Topografiner: An Instrument for Measuring Surface Microtopography, Rev. Sci. Instrum. 43, 999 (1972).

    Article  Google Scholar 

  24. G. Binnig and H. Rohrer, Scanning Tunneling Microscopy, Helv. Phys. Acta 55, 726–735 (1982).

    CAS  Google Scholar 

  25. J. A. Golovchenko, The Tunneling Microscope: A New Look at the Atomic World, Science 232, 48–53 (1986).

    CAS  Google Scholar 

  26. R. A. Dragoset, R. D. Young, H. P. Layer, S. R. Mielczarek, E. C. Teague, and R. J. Celotta, Scanning Tunneling Microscopy Applied to Optical Surfaces, Opt. Lett. 11, 560–562 (1986).

    Article  CAS  Google Scholar 

  27. N. Garcia, A. M. Baro, R. Miranda, H. Rohrer, Ch. Gerber, R. Garcia Cantu, and J. L. Pena, Surface Roughness Standards, Obtained with the Scanning Tunneling Microscope Operated at Atmospheric Air Pressure, Metrologia 21, 135–138 (1985).

    Google Scholar 

  28. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, 7/7 Reconstruction on Si (111) Resolved in Real Space, Phys. Rev. Lett. 50, 120 (1983).

    Article  CAS  Google Scholar 

  29. R. S. Becker, J. A. Golovchenko, and B. S. Swartzentruber, Tunneling Images of Germanium Surface Reconstructions and Phase Boundaries, Phys. Rev. Lett. 54, 2678–2680 (1985).

    Article  CAS  Google Scholar 

  30. J. M. Bennett, J. Jahanmir, J. C. Podlesny, T. L. Baiter, and T. D. Hobbs, Scanning Force Microscope as a Tool for Studying Optical Surfaces, Appl. Opt. 34, 213–230 (1995).

    CAS  Google Scholar 

  31. J. M. Bennett, M. M. Tehrani, J. Jahanmir, J. C. Podlesny, and T. L. Baiter, Topographic Measurements of Supersmooth Dielectric Films Made with a Mechanical Profiler and a Scanning Force Microscope, Appl. Opt. 34, 209–212 (1995).

    CAS  Google Scholar 

  32. K. Creath, Phase Measurement Interferometry Techniques, in: Progress in Optics, Vol. 261 (E. Wolf, ed.), Elsevier, New York (1988), p. 349.

    Google Scholar 

  33. E. Morrison, A Prototype Scanning Stylus Profilometer for Rapid Measurement of Small Surface Areas, Int. J. Mach. Tools Manufact. 35, 325–331 (1995).

    Article  Google Scholar 

  34. G. Rasigni, F. Varnier, M. Rasigni, J. P. Palmari, and A. Llebaria, Spectral-Density Function of the Surface Roughness for Polished Optical Surfaces, J. Opt. Soc. Am. 73, 1235–1239 (1983); see references therein.

    CAS  Google Scholar 

  35. J. F. Nankivell, The Theory of Electron Stereo Microscopy, Optik 20, 171–198 (1963).

    CAS  Google Scholar 

  36. D. W. Butler, A Stereo Electron Microscope Technique for Microtopographic Measurements, Micron 4, 410–424 (1973).

    Google Scholar 

  37. W. Hillman, Research and Development in the Field of Roughness Measuring, Part 3: Measuring Methods by Means of Scanning Electron Microscope, Technisches Messen 47, 273–283 (1980).

    Google Scholar 

  38. M. Schubert, A. Gleichmann, and M. Hemmleb, Determination of the Height of a Microstructure Sample by a SEM with a Conventional and a Digital Photogrammetric Method, Ultramicroscopy 63, 57–64 (1996).

    Article  CAS  Google Scholar 

  39. T. Kohno, N. Ozawa, K. Miyamoto, and T. Musha, High Presentation Optical Surface Sensor, Appl. Opt. 27, 103–108 (1988).

    Google Scholar 

  40. A. M. Hamouda, A Precise Pneumatic Co-axial Jet Gauging System for Surface Roughness Measurement, Prec. Eng. 1, 95–100 (1979).

    Article  Google Scholar 

  41. J. N. Brecker, R. E. Fromson, and L. Y. Shum, A Capacitance-Based Surface Texture Measuring System, CIRP Ann. 25/1, 375–377 (1977).

    Google Scholar 

  42. A. G. Lieberman, T. V. Vorburger, C. H. W. Giauque, D. G. Risko, and K. R. Rathbun, Comparison of Capacitance and Stylus Measurements of Surface Roughness, in: Metrology and Properties of Engineering Surfaces 1988 (K. J. Stout and T. V. Vorburger, eds.), Kogan Page, London (1988), pp. 115–130.

    Google Scholar 

  43. T. V. Vorburger and E. C. Teague, Optical Techniques for On-Line Measurement of Surface Topography, Opt. Eng. 3, 61–83 (1981).

    Google Scholar 

  44. T. V. Vorburger, E. Marx, and T. R. Lettieri, Regimes of Roughness for Measurements of Light Scattering, Appl. Opt. 32, 3401 (1993).

    CAS  Google Scholar 

  45. J. M. Elson, H. E. Bennett, and J. M. Bennett, Scattering from Optical Surfaces, in: Applied Optics and Optical Engineering, Vol. 7 (R. R. Shannon and J. C. Wyant, eds.), Academic Press, New York (1979), pp. 191–244.

    Google Scholar 

  46. J. C. Stover, Optical Scattering: Measurement and Analysis, McGraw-Hill, New York (1990).

    Google Scholar 

  47. R. Brodmann, O. Gerstorfer, and G. Thurn, Optical Roughness Measuring Instrument for Fine-Machined Surfaces, Opt. Eng. 24, 408–413 (1985).

    Google Scholar 

  48. T. A. Germer and C. C. Asmail, Proposed Methodology for Characterization of Silicon Wafer Haze Instrumentation, Proc. SPIE 2862, 12–17 (1996).

    Google Scholar 

  49. T. A. Germer, Angular Dependence and Polarization of Out-of-plane Optical Scattering from Particulate Contamination, Subsurface Defects, and Surface Microroughness, Appl. Opt. 36, 8798–8805 (1997).

    Article  CAS  Google Scholar 

  50. G. A. Al-Jumaily, S. R. Wilson, and J. P. McNeil, Frequency Response Characteristics of an Optical Scatterometer and a Surface Profilometer, Proc. SPIE 675, 14–22 (1986).

    Google Scholar 

  51. J. G. Valliant and J. M. Bennett, Instrument for On-line Monitoring of Surface Roughness of Machined Surfaces, in: Proceedings of Advances in Surface Metrology, American Society of Precision Engineers, Raleigh (1997), pp. 82–87.

    Google Scholar 

  52. J. Lorincik, D. Marton, R. L. King, and J. Fine, Scanning Scattering Microscope for Surface Microtopography and Defect Imaging, J. Vac. Sci. Technol. B14, 2417–2423 (1996); D. Marton and J. Fine, Sputtering-Induced Surface Roughness of Metallic Thin Films, Thin Solid Films 185, 79–90 (1990).

    Google Scholar 

  53. E. Spiller, Experience with the In Situ Monitor System for the Fabrication of X-ray Mirrors, Proc. SPIE 563, 367–375 (1985).

    CAS  Google Scholar 

  54. J. W. Goodman, Statistical Properties of Laser Speckle Patterns, in: Laser Speckle and Related Phenomena, Topics in Applied Physics, Vol. 9 (J. C. Dainty, ed.), Springer-Verlag, Berlin (1975), pp. 9–75.

    Google Scholar 

  55. T. Asakura, Surface Roughness Measurement, in: Speckle Metrology (R. K. Erf, ed.), Academic Press, New York (1978), pp. 11–49.

    Google Scholar 

  56. J. Uozumi and T. Asakura, Granularity Growth of Laser Speckle and Its Application to Surface Inspection, Opt. Laser Technol. 9, 177–182 (1977).

    Article  Google Scholar 

  57. R. J. Ahlers, White-Light Method: A New Sensor for the Optical Evaluation of Rough Surfaces, Opt. Eng. 24, 423–427 (1985).

    Google Scholar 

  58. F. Hottier, J. B. Theeten, A. Masson, and J. L. Domange, Comparative LEED and RHEED Examination of Stepped Surfaces; Application to Cu (111) and GaAs (001) Vicinal Surfaces, Surf. Sci. 65, 563–577 (1977).

    Article  CAS  Google Scholar 

  59. M. Henzler, Atomic Steps on Single Crystals: Experimental Methods and Properties, Appl. Phys. 9, 11–17 (1976); M. Henzler and P. Marienhoff, High Resolution Measurement of the Step Distribution at the Si/SiO Interface, J. Vac. Sci. Technol. B 2, 346–348 (1984).

    Article  CAS  Google Scholar 

  60. T. E. Madey, J. T. Yates, Jr., D. R. Sandstrom, and R. J. H. Voorhoeve, in: Treatise on Solid State Chemistry, Vol. 6B (N. B. Hannay, ed.), Plenum Press, New York (1976), pp. 1–124.

    Google Scholar 

  61. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area, and Porosity, Academic Press, New York (1982); P. H. Emmett, in: Catalysis, Vol. I, Reinhold, New York (1965), pp. 63–67.

    Google Scholar 

  62. J. E. Benson and M. Boudart, Hydrogen-Oxygen Titration Method for the Measurement of Supported Platinum Surface Areas, J. Catal. 4, 704–710 (1965).

    Article  CAS  Google Scholar 

  63. J. R. Benford and H. E. Rosenbergen, in: Applied Optics and Optical Engineering, Vol. 4, Part 1 (R. Kingslake, ed.). Academic Press, New York (1967), Chap. 2.

    Google Scholar 

  64. J. H. Richardson, Optical Microscopy for the Materials Sciences, Marcel Dekker, New York (1971).

    Google Scholar 

  65. T. T. Saito and L. B. Simmons, Performance Characteristics of Single Point Diamond Machined Metal Mirrors for Infrared Laser Applications, Appl. Opt. 13, 2647–2650 (1974).

    Article  Google Scholar 

  66. E. Rabinowicz, Friction and Wear of Materials, Wiley, New York (1965).

    Google Scholar 

  67. G. N. Maracas, G. L. Harris, C. A. Lee, and R. A. McFarlane, On the Origin of Periodic Surface Structure of Laser-Annealed Semiconductors, Appl. Phys. Lett. 33, 453–455 (1978).

    Article  CAS  Google Scholar 

  68. C. P. Kirk and D. Nyyssonen, Measuring Linewidths with an Optical Microscope, Test Measure. World 6, 68–79 (1986).

    Google Scholar 

  69. A. O. Christie, L. V. Evans, and M. E. Callow, A New Look at Marine Fouling, Part 4, Shipping World Shipbuilder, 121–124 (1976).

    Google Scholar 

  70. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis, Plenum Press, New York (1981).

    Google Scholar 

  71. R. C. Enger and S. K. Case, Optical Elements with Ultrahigh Spatial-Frequency Surface Corrugations, Appl. Opt. 22, 3220–3228 (1983).

    CAS  Google Scholar 

  72. L. N. Gilbertson and R. D. Zipp, eds., Fractography and Materials Science, American Society for Testing and Materials, Philadelphia (1981).

    Google Scholar 

  73. W. F. Cordes and R. F. Leonard, Resist Materials for High Resolution Photolithography, Proc. SPIE 275, 164–172 (1981).

    CAS  Google Scholar 

  74. C. W. Wilson, P. Roitman, and J. L. Blue, High-Accuracy Physical Modeling of Submicrometer MOSFET’s, IEEE Trans. Electron Devices ED-32, 1246–1258 (1985).

    Google Scholar 

  75. For example, M. Kimizuka and K. Hirata, Pattern Profile Control of Polysilicon Plasma Etching, J. Vac. Sci. Technol. B 3, 16–19 (1985), and other articles in the same issue.

    Article  CAS  Google Scholar 

  76. T. Ichinokawa and Y. Ishikawa, Surface Analyses by Low Energy SEM in Ultra High Vacuum, Ultramicroscopy 15, 193–204 (1984).

    Article  CAS  Google Scholar 

  77. J. C. H. Spence, Experimental High-Resolution Electron Microscopy, Oxford University Press, Oxford (1981).

    Google Scholar 

  78. M. Field and J. F. Kahles, Review of Surface Integrity of Machined Components, CIRP Ann. 20/2, 1–11 (1971).

    Google Scholar 

  79. L. D. Marks, Direct Imaging of Carbon-Covered and Clean Gold (110) Surfaces, Phys. Rev. Lett. 51, 1000–1002 (1983).

    Article  CAS  Google Scholar 

  80. D. G. Stearns, The Scattering of X-Rays from Nonideal Multilayer Structures, J. Appl. Phys. 65, 491–506 (1989).

    CAS  Google Scholar 

  81. P. E. Hojlund-Nielsen and J. M. Cowley, Surface Imaging Using Diffracted Electrons, Surf. Sci. 56, 340–354 (1976).

    Google Scholar 

  82. N. Osakabe, Y. Tanishiro, K. Yagi, and G. Honjo, Reflection Electron Microscopy of Clean and Gold Deposited (111) Silicon Surfaces, Surf. Sci. 97, 393–408 (1980).

    Article  CAS  Google Scholar 

  83. T. Jach, G. Hembree, and L. B. Holdeman, Observation of Gold Thin Film Growth with Reflection Electron Microscopy, Thin Solid Films 187, 133–140 (1990).

    Article  CAS  Google Scholar 

  84. N. Osakabe, Y. Tanishiro, K. Yagi, and G. Honjo, Image Contrast of Dislocations and Atomic Steps on (111) Silicon Surface in Reflection Electron Microscopy, Surf. Sci. 102, 424–442 (1981).

    CAS  Google Scholar 

  85. N. Osakabe, Y. Tanishiro, K. Yagi, and G. Honjo, Direct Observation of the Phase Transition Between the (7/7) and (1/1) Structures of Clean (111) Silicon Surfaces, Surf. Sci. 109, 353–366 (1981).

    Article  CAS  Google Scholar 

  86. T. Wilson, ed., Confocal Microscopy, Academic Press, London (1990).

    Google Scholar 

  87. A. Bryant, D. P. E. Smith, and C. F. Quate, Imaging in Real Time with the Tunneling Microscope, Appl. Phys. Lett. 48, 832 (1986).

    Article  CAS  Google Scholar 

  88. M. Kirk and S. I. Park, Production Monitoring of Laser Texturing for Magnetic Disks by Ultra-fast AFM, in: Technical Program, Fourth Workshop on IASPM, Gaithersburg, MD, May 6–8 (1997), p. 25.

    Google Scholar 

  89. T. H. McWaid, T. V. Vorburger, J. Fu, J. F. Song, and E. Whitenton, Methods Divergence Between Measurements of Micrometer and Submicrometer Surface Features, Nanotechnology 5, 33–43 (1994).

    Article  Google Scholar 

  90. J, F. Song and T. V. Vorburger, Stylus Profiling at High Resolution and Low Force, Appl. Opt. 30, 42–50 (1991).

    CAS  Google Scholar 

  91. R. E. Reason, in: Modern Workshop Technology, 2—Processes, 3rd ed. (H. W. Baker, ed.), Macmillan, London (1970), Chap. 23.

    Google Scholar 

  92. B. Scheffer and C. Thurel, Donnees de base de la Realisation d’un Calculateur Ret W, Mecanique, Materiaux, Electricite, 286, 19–26 (1973).

    Google Scholar 

  93. J. Bielle, Functional Needs, Machining Conditions, and Economics of Surface Finishing (transl. T. V. Vorburger and V. B. Roy), Prec. Eng. 7, 31–37 (1985).

    Article  Google Scholar 

  94. R. D. Young, The National Measurement System for Surface Finish, NBSIR 75-927, US Department of Commerce, Washington, DC (1976).

    Google Scholar 

  95. D. J. Whitehouse and J. F. Archard, The Properties of Random Surfaces of Significance in Their Contact, Proc. R. Soc. Lond. A316, 97–121 (1970).

    Google Scholar 

  96. R. S. Sayles and T. R. Thomas, Thermal Conductance of a Rough Elastic Contact, Appl. Energy 2, 249–267 (1976).

    Article  Google Scholar 

  97. P. R. Nayak, Random Process Model of Rough Surfaces, Trans. ASME, J. Lubric. Technol. 93, 398–407 (1971).

    Google Scholar 

  98. J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, Wiley-Interscience, New York (1971).

    Google Scholar 

  99. M. S. Longuet-Higgins, The Statistical Analysis of a Random, Moving Surface, Trans. R. Soc. London 249A, 321–387 (1957).

    Google Scholar 

  100. R. B. Blackman and J. W. Tukey, The Measurement of Power Spectra, Dover, New York (1959).

    Google Scholar 

  101. R. S. Sayles, in: Rough Surfaces (T. R. Thomas, ed.), Longman Group, London (1982), pp. 91–118.

    Google Scholar 

  102. J. B. P. Williamson, in: Rough Surfaces (T. R. Thomas, ed.), Longman Group, London (1982), pp. 1–10.

    Google Scholar 

  103. J. M. Elson and J. M. Bennett, Relation Between the Angular Dependence of Scattering and the Statistical Properties of Optical Surfaces, J. Opt. Soc. Am. 69, 31–47 (1979).

    Google Scholar 

  104. J. Peklenik, New Developments in Surface Characterization and Measurements by Means of Random Process Analysis, Proc. Instn. Mech. Engrs. 182, Pt 3k, 108–126 (1967-68).

    Google Scholar 

  105. E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ (1974), pp. 147–171.

    Google Scholar 

  106. T. V. Vorburger, FASTMENU: A Set of FORTRAN Programs for Analyzing Surface Texture, NBSIR 83-2703, US Department of Commerce, Washington, DC (1983), pp. 102–119.

    Google Scholar 

  107. E. C. Teague, F. E. Scire, and T. V. Vorburger, Sinusoidal Profile Precision Roughness Specimens, Wear 83, 61–73 (1982).

    Google Scholar 

  108. T. V. Vorburger, J. F. Song, C. H. W. Giauque, T. B. Renegar, E. P. Whitenton, and M. C. Croarkin, Stylus-laser Surface Calibration System, Prec. Eng. 19, 157–163 (1996).

    Article  Google Scholar 

  109. R. S. Sayles and T. R. Thomas, Surface Topography as a Nonstationary Random Process, Nature 271, 431–434 (1978).

    Article  Google Scholar 

  110. G. A. Somorjai, Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca, NY (1981), pp. 490–491; see references therein.

    Google Scholar 

  111. J. G. Endriz and W. E. Spicer, Study of Aluminum Films, I. Optical Studies of Reflectance Drops and Surface Oscillations on Controlled-Roughness Films, Phys. Rev. B 4, 4144–4159 (1971).

    Google Scholar 

  112. E. L. Church, M. R. Howells, and T. V. Vorburger, Spectral Analysis of the Finish of Diamond-Turned Mirror Surfaces, Proc. SPIE 315, 202–218 (1981). J. Schneir, R. Jobe, and V. W. Tsai, Solid State Technology 40, 203 (June, 1997).

    CAS  Google Scholar 

  113. J. Fu, R. D. Young, and T. V. Vorburger, Long Range Scanning for Scanning Tunneling Microscopy, Rev. Sci. Instrum. 63, 2200–2205 (1992).

    Article  CAS  Google Scholar 

  114. E. J. Abbott and F. A. Firestone, Specifying Surface Quality, J. Mech. Eng. 55, 569–572 (1933).

    Google Scholar 

  115. J. D. Garratt, New Stylus Instrument with a Wide Dynamic Range for Use in Surface Metrology, Prec. Eng. 4, 145–151 (1982).

    Article  Google Scholar 

  116. R. E. Reason, Surface Finish and Its Measurement, J. Inst. Prodn. Engrs. 23, 347–372 (1944).

    Google Scholar 

  117. J. Bielle, private communication.

    Google Scholar 

  118. J. B. Bryan, The Abbe Principle Revisited—An Updated Interpretation, Prec. Eng. 1, 129–132 (1979).

    Google Scholar 

  119. E. C. Teague, R. D. Young, F. E. Scire, and D. Gilsinn, Para-Flex Stage for Microtopographic Mapping, Rev. Sci. Instrum. 59, 67–73 (1988).

    Article  CAS  Google Scholar 

  120. D. J. Whithouse, Theoretical Analysis of Stylus Integration, CIRP Ann. 23/1, 181–182 (1974).

    Google Scholar 

  121. T. V. Vorburger, E. C. Teague, F. E. Scire, and F. W. Rosberry, Measurements of Stylus Radii, Wear 57, 39–49 (1979).

    Article  Google Scholar 

  122. R. Krüger-Sehm, private communication, Taylor-Hobson Ltd., Leicester, UK.

    Google Scholar 

  123. J. S. Villarrubia, Morphological Estimation of Tip Geometry for Scanned Probe Microscopy, Surf. Sci. 321, 287–300 (1994).

    Article  CAS  Google Scholar 

  124. J. S. Villarrubia, Algorithms for Scanned Probe Microscope Image Simulation, Surface Reconstruction, and Tip Estimation, J. Res. NIST 102, 425–454 (1997). Also located at http://nvl.nist.gov/pub/nistpubs/jres/jres.htm url

    Google Scholar 

  125. T. R. Thomas, ed, Rough Surfaces, Longman Group, London (1982), pp. 24–25.

    Google Scholar 

  126. O. Krantz, Untersuchungen des Abtastvorganges bei der Rauheitsmessung (Investigation of the Probing Process in Roughness Measurement), PTB-Bericht ME 29 (1980).

    Google Scholar 

  127. R. C. Spragg, Accurate Calibration of Surface Texture and Roundness Measuring Instruments, Proc. Instn. Mech. Engrs. 182, Pt 3k, 397–405 (1968).

    Google Scholar 

  128. E. C. Teague, Evaluation, Revision, and Application of the NBS Stylus/Computer System for the Measurement of Surface Roughness, NBS Tech. Note 902, US Department of Commerce, Washington, DC (1976); E. C. Teague, private communication.

    Google Scholar 

  129. M. N. H. Damir, Error in Measurement Due to Stylus Kinematics, Wear 26, 219–227 (1973).

    Article  Google Scholar 

  130. S. Ajioka, The Dynamic Response of Stylus, Bull. Jpn. Soc. Prec. Eng. 1, 228–233 (1966).

    Google Scholar 

  131. J. I. McCool, Assessing the Effect of Stylus Tip Radius and Flight on Surface Topography Measurements, J. Tribol. Trans. ASME 106, 202–210 (1984).

    Google Scholar 

  132. J. F. Song and T. V. Vorburger, Stylus Flight in Surface Profiling, J. Manuf. Sci. Engr. 118, 188 (1996).

    Google Scholar 

  133. H. Bosse, R. Krüger, W. Löhr, and F. Lüdicke, Oberflâchensimulator für die dynamische Kalibrierung von LängenmeBtastern (Surface Simulator for Dynamic Probe Calibration), Technisches Messen 61, 82–88 (1994).

    Google Scholar 

  134. D. J. Whitehouse, Some Ultimate Limits on the Measurement of Surfaces Using Stylus Techniques, Measurement and Control 8, 147–151 (1975).

    Google Scholar 

  135. J. F. Verrill, Use of the Talystep in Investigating Diffraction Grating Groove Profiles, J. Phys. E. 6, 1199–1201 (1973).

    Article  Google Scholar 

  136. J. B. P. Williamson, Microtopography of Surfaces, Proc. Inst. Mech. Engrs. 183, Pt. 3k, 21–31 (1967-68).

    Google Scholar 

  137. R. S. Sayles and T. R. Thomas, Mapping a Small Area of a Surface, J. Phys. E. 9, 855–861 (1976).

    Article  Google Scholar 

  138. R. S. Sayles, T. R. Thomas, J. Anderson, I. Haslock, and A. Unsworth, Measurement of the Surface Microgeometry of Articular Cartilage, J. Biomech. 12, 257–267 (1979).

    Article  CAS  Google Scholar 

  139. E. C. Teague, F. E. Scire, S. M. Baker, and S. W. Jensen, Three-Dimensional Stylus Profilometry, Wear 83, 1–12 (1982).

    Google Scholar 

  140. K. J. Stout, P. J. Sullivan, W. P. Dong, E. Mainsah, N. Luo, T. Mathia, and H. Zahouani, The Development of Methods for the Characterization of Roughness in Three Dimensions, ECSC-EEC-EAEC, Brussels (1993).

    Google Scholar 

  141. T. Kohno, N. Ozawa, K. Miyamoto, and T. Musha, Practical Non-Contact Surface Measuring Instrument with One Nanometre Resolution, Prec. Eng. 7, 231–232 (1985).

    Article  Google Scholar 

  142. L. Mattsson and P. Wågberg, Assessment of Surface Finish on Bulk Scattering Materials: A Comparison Between Optical Laser Stylus and Mechanical Stylus Profilometers, Prec. Eng. 15, 142–149 (1993).

    Article  Google Scholar 

  143. S. Inoue, Foundations of Confocal Scanned Imaging in Light Microscopy, in: Handbook of Biological Ċonfocal Microscopy (J. B. Pawley, ed.), Plenum Press, New York (1995), pp. 1–17.

    Google Scholar 

  144. J. C. Wyant, Precision Optical Testing, Science 206, 168–172 (1979).

    Google Scholar 

  145. J. F. Biegen and R. A. Smythe, High Resolution Phase-measuring Laser Interferometric Microscopy for Engineering Surface Metrology, in: Metrology and Properties of Engineering Surfaces, 1988 (K. J. Stout and T. V. Vorburger, eds.), Kogan-Page, London (1988), pp. 287–299.

    Google Scholar 

  146. T. C. Bristow, Surface Roughness Measurements over Long Scan Lengths, in: Metrology and Properties of Engineering Surfaces (K. J. Stout and T. V. Vorburger, eds.), Kogan-Page, London (1988), pp. 281–285.

    Google Scholar 

  147. K. H. Guenther, P. G. Wierer, and J. M. Bennett, Surface Roughness Measurements of Low-Scatter Mirrors and Roughness Standards, Appl Opt. 23, 3820–3836 (1984).

    CAS  Google Scholar 

  148. P. Z. Takacs, S. K. Feng, E. L. Church, S. Qian, and W. Liu, Long Trace Profile Measurements on Cylindrical Aspheres, Proc. SPIE 966, 354–364 (1988).

    Google Scholar 

  149. R. Smythe, L. Selberg, and L. Deck, Pole Tip Recession Measurement of Transducers on Thin Film Sliders for Rigid Disk Drives, presented at International Disk Conference, Tokyo, April (1992).

    Google Scholar 

  150. C. J. Evans, Cryogenic Diamond Turning of Stainless Steel, CIRP Ann. 40/1, 571–575 (1991).

    Google Scholar 

  151. K. Creath and J. C. Wyant, Absolute Measurement of Surface Roughness, Appl. Opt. 29, 3823–3827 (1990).

    Google Scholar 

  152. J. H. Richardson, Optical Microscopy for the Materials Sciences, Marcel Dekker, New York (1971), p. 136.

    Google Scholar 

  153. P. J. Caber, Interferometric Profiler for Rough Surfaces, Appl. Opt. 32, 3438–3441 (1993).

    Google Scholar 

  154. L. Deck and P. deGroot, High-speed Noncontact Profiler Based on Scanning White-light Interferometry, Appl. Opt. 33, 7334–7338 (1994).

    Google Scholar 

  155. J. C. Wyant and J. Schmit, Large Field of View, High Spatial Resolution, Surface Measurements, in: Proceedings of the Seventh International Conference on Metrology and Properties of Engineering Surfaces (B. G. Rosen and R. J. Crafoord, eds.), Chalmers University of Technology, Göteborg, Sweden (1997), pp. 294–301.

    Google Scholar 

  156. G. Binnig, C. F. Quate, and Ch. Gerber, Atomic Force Microscope, Phys. Rev. Lett. 56, 930 (1986).

    Article  Google Scholar 

  157. O. C. Wells, Scanning Electron Microscopy, McGraw-Hill, New York (1974).

    Google Scholar 

  158. C. J. Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press, New York (1993).

    Google Scholar 

  159. J. A. Stroscio and W. J. Kaiser, eds., Scanning Tunneling Microscopy, Methods of Experimental Physics, Vol. 27, Academic Press, Boston (1993).

    Google Scholar 

  160. B. S. Swartzentruber, Y. W. Mo, R. Kariotis, M. G. Lagally, and M. B. Webb, Direct Determination of Step and Kink Energies on Vicinal Si(001), Phys. Rev. Lett. 65, 1913–1916 (1990).

    Article  CAS  Google Scholar 

  161. R. M. Feenstra, J. A. Stroscio, J. Tersoff, and A. P. Fein, Atom-Selective Imaging of the GaAs (110) Surface, Phys. Rev. Lett. 58, 1192–1195 (1987).

    Article  CAS  Google Scholar 

  162. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, and P. K. Hansma, An Atomic-Resolution Atomic-Force Microsope Implemented Using An Optical Lever, J. Appl. Phys. 65, 164 (1989).

    Article  CAS  Google Scholar 

  163. R. Erlandsson, G. M. McClelland, C. M. Mate, and S. Chiang, Atomic Force Microscopy Using Optical Interferometry, J. Vac. Sci. Technol. A 6, 266 (1988).

    Article  CAS  Google Scholar 

  164. M. Tortonese, R. C. Barrett, and C. F. Quate, Atomic Resolution with an Atomic Force Microscopy Using Piezoresistive Detection, Appl. Phys. Lett. 62, 834 (1993).

    Article  CAS  Google Scholar 

  165. P. Günther, U. Ch. Fischer, and K. Dransfeld, Scanning Near-Field Acoustic Microscopy, Appl. Phys. B48, 89 (1989).

    Google Scholar 

  166. M. T. Postek, Critical Issues in Scanning Electron Microscope Metrology, J. Res. NIST 99, 641 (1994).

    CAS  Google Scholar 

  167. J. Schneir, T. H. McWaid, J. Alexander, and B. P. Wilfley, Design of an Atomic Force Microscope With Interferometric Position Control, J. Vac. Sci. Technol. B 12, 3561 (1994).

    Article  CAS  Google Scholar 

  168. E. C. Teague, The National Institute of Standards and Technology Molecular Measuring Machine Project: Metrology and Precision Engineering Design, J. Vac. Sci. Technol. B 7, 1898 (1989).

    Article  Google Scholar 

  169. O. Jusko, X. Zhao, and G. Wilkening, Scanning Probe Microscopes for the Measurement of Micro-and Nano Structures, in: Proceedings of the International Seminar on Quantitative Microscopy (K. Hasche, W. Mirande, and G. Wilkening, eds.), PTB-F-21, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany (1995), p. 32; O. Jusko, X. Zhao, H. Wolff, and G. Wilkening, Design and Three Dimensional Calibration of a Measuring Scanning Tunneling Microscope for Metrological Applications, Rev. Sci. Instrum. 65, 2514 (1994).

    Google Scholar 

  170. M. Biennias, S. Gao, K. Hasche, R. Seemann, and K. Thiele, Scanning Probe Microscopes for Dimensional Length Measurements, Surface and Interface Analysis 25, 606 (1997).

    Google Scholar 

  171. G. B. Picotto, S. Desogus, S. Lanyi, R. Nerino, and A. Sosso, Scanning Tunneling Microscopy Head Having Integrated Capacitive Sensors For Calibration of Scanner Displacements, J. Vac. Sci. Technol. B 14, 897 (1996).

    Article  CAS  Google Scholar 

  172. R. C. Barren and C. F. Quate, Optical Scan-Correction System Applied to Atomic Force Microscopy, Rev. Sci. Instrum. 62, 1393 (1991).

    Google Scholar 

  173. P. E. West, R. Jobe, and T. Van Slambrouck, Linearity and Calibration of Scanning Probe Microscope Images, in: Atomic Force Microscopy/Scanning Tunneling Microscopy (S. H. Cohen, M. T. Bray, and M. L. Lightbody, eds.), Plenum Press, New York (1994), p. 321.

    Google Scholar 

  174. D. R. Marshall, E. M. Fray, J. D. Mueller, L. M. Courtney, III, J. C. Podlesny, J. B. Hayes, T. L. Baiter, and J. Jahanmir, A Closed-Loop Optical Scan Correction System for Scanning Probe, in: Atomic Force Microscopy/Scanning Tunneling Microscopy (S. H. Cohen, M. T. Bray, and M. L. Lightbody, eds.), Plenum Press, New York (1994), p. 437.

    Google Scholar 

  175. M. Holmes, D. Trumper, and R. Hocken, Atomic Scale Precision Motion Control Stage (the Angstrom Stage), CIRP Ann. 44/1, 455 (1995).

    Google Scholar 

  176. T. V. Vorburger, C. J. Evans, V. Tsai, J. Fu, E. D. Williams, R. Dixson, P. J. Sullivan, and T. McWaid, Finish and Figure Metrology for Soft X-ray Optics, in: JSPE Proceedings on Soft X-ray Optics: Technical Challenges (T. Namioka, H. Kinoshita, and K. Ito, eds.), Japan Society for Precision Engineering, Tokyo (1997), p. 298.

    Google Scholar 

  177. M. Suzuki, S. Aoyama, T. Futatsuki, A. J. Kelly, T. Osada, A. Nakano, Y. Sakakibara, Y. Suzuki, H. Takami, T. Takenobu, and M. Yasutake, Standardized Procedure for Calibrating Height Scales in Atomic Force Microscopy on the Order of 1 nm, J. Vac. Sci. Technol. A 14, 1228 (1996).

    Article  CAS  Google Scholar 

  178. V. Tsai, X. S. Wang, E. D. Williams, J. Schneir, and R. Dixson, Conformal Oxides on Si Surfaces, Appl. Phys..Lett. 71, 1495 (1997).

    CAS  Google Scholar 

  179. A. J. Pidduck, A. B. J. Smout, P. Wagner, M. Suhren, D. C. Gupta, and S. Yang, Microsc. Semicond. Mater. Conf., Oxford, Int. Phys. Conf. Ser. No 157 (1997), p. 601.

    Google Scholar 

  180. UC Standard, One-Nanometer Order Z-Axis Calibration of AFM, Ultra Clean Society, Tokyo (1995).

    Google Scholar 

  181. M. Aketagawa, K. Takada, S. Sasaki, K. Kobayashi, S. Suzuki, K. Yamada, and Y. Nakayama, Direct Comparison of the SEM Standard Grating and Crystalline Lattices, in: Progress in Precision Engineering and Nanotechnology (H. Kunzmann, F. Waldele, G. Wilkening, J. Corbett, P. McKeown, M. Week, and J. Hummler, eds.), Physikalisch-Technische Bundesanstalt, Braunschweig, Germany (1997), p. 49.

    Google Scholar 

  182. H. Kawakatsu and H. Kougami, Automated Calibration of the Sample Image Using Crystalline Lattice for Scale Reference in Scanning Tunneling Microscopy, J. Vac. Sci. Technol. B 14, 11 (1996).

    CAS  Google Scholar 

  183. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nanotubes as Nanoprobes in Scanning Probe Microscopy, Nature 384, 147 (1996).

    Article  CAS  Google Scholar 

  184. J. E. Griffith, G. L. Miller, C. A. Green, D. A. Grigg, and P. E. Russell, A Scanning Tunneling Microscope With a Capacitance-Based Position Monitor, J. Vac. Sci. Technol. B 8, 2023 (1990).

    Article  Google Scholar 

  185. J. E. Griffith, G. L. Miller, and C. E. Bryson, The Balance Beam Force Sensor, in: Technical Program, Fourth Workshop on IASPM, Gaithersburg, MD, May 6–8 (1997), p. 56.

    Google Scholar 

  186. Y. Martin and H. K. Wickramasinghe, Toward Accurate Metrology With Scanning Force Microscopes, J. Vac. Sci. Technol. B 13, 2335 (1995).

    Article  CAS  Google Scholar 

  187. D. Nyyssonen, L. Landstein, and E. Coombs, Two-Dimensional Atomic Force Microprobe Trench Metrology System, J. Vac. Sci. Technol. B 9, 3612 (1991).

    Article  Google Scholar 

  188. D. Nyyssonen and R. D. Larrabee, Submicrometer Linewidth Metrology In the Optical Microscope, J. Res. Natl. Bur. Stand. 92, 187 (1987).

    CAS  Google Scholar 

  189. D. Nyyssonen and M. T. Postek, SEM-Based System For Calibration of Linewidth SRMs for the IC Industry, Proc. SP1E 565, 180 (1985).

    Google Scholar 

  190. J. Schneir, J. A. Dagata, H. H. Harary, C. J. Evans, A. J. Melmed, and H. B. Elswijk, Scanning Tunneling Microscopy of Optical Surfaces, Proc. SP1E 1164, 112 (1989).

    CAS  Google Scholar 

  191. NT-MDT Company, Zelenograd Research Institute of Physical Problems, Moscow, Russia. http://www.ntmdt.ru/grating.htm url (6/17/97).

    Google Scholar 

  192. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy, Cambridge University Press, New York (1994).

    Google Scholar 

  193. G. Meyer and N. M. Amer, Simultaneous Measurement of Lateral and Normal Forces With an Optical-Beam-Deflection Atomic Force Microscope, Appl. Phys. Lett. 51, 2089 (1990).

    Google Scholar 

  194. D. Tomanek, W. Zhong, and H. Thomas, Calculation of an Atomically Modulated Friction Force in Atomic-Force Microscopy, Europhys. Lett. 15, 887 (1991).

    CAS  Google Scholar 

  195. K. Babcock, Magnetic Force Microscopy: High-Resolution Imaging for Data Storage, Data Storage, 43 (Sept. 1994).

    Google Scholar 

  196. Y. Martin, D. Rugar, and H. K. Wickramasinghe, High-Resolution Magnetic Imaging of Domains in TbFe by Force Microscopy, Appl. Phys. Lett. 52, 244 (1988).

    CAS  Google Scholar 

  197. D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, I. McFadyen, and T. Yogi, Magnetic Force Microscopy: General Principles and Application to Longitudinal Recording Media, J..Appl. Phys. 68, 1169 (1990).

    Article  CAS  Google Scholar 

  198. C. Schönenberger, S. F. Alvarado, S. E. Lambert, and I. L. Sanders, Separation of Magnetic and Topographic Effects in Force Microscopy, J. Appl. Phys. 67, 7278 (1990).

    Google Scholar 

  199. P. Rice, S. E. Russek, and B. Haines, Magnetic Imaging Reference Sample, IEEE Trans. Magn. 32, 4133 (1996).

    CAS  Google Scholar 

  200. B. Hoffmann, R. Houbertz, U. Hartmann, Eddy Current Microscopy, in STM’97, Hamburg, Germany (1997), p. 357.

    Google Scholar 

  201. Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, High-resolution Capacitance Measurement and Potentiometry by Force Microscopy, Appl. Phys. Lett. 52, 1103 (1988).

    Google Scholar 

  202. B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin, Contact Electrification Using Force Microscopy, Phys. Rev. Lett. 63, 2669 (1989).

    Article  CAS  Google Scholar 

  203. C. Schönenberger and S. F. Alvarado, Observation of Single Charge Carriers by Force Microscopy, Phys. Rev. Lett. 65, 3162 (1990).

    Google Scholar 

  204. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Kelvin Probe Force Microscopy, Appl. Phys. Lett. 58, 2951 (1991).

    Article  Google Scholar 

  205. K. Takata, T. Kure, and T. Okawa, Observation of Deep Contact Holes and Conductive Components Underlying Insulator in a Memory Cell by Tunneling Acoustic Microscopy, Appl. Phys. Lett. 60, 515 (1992).

    Article  Google Scholar 

  206. K. Wago, O. Zuger, R. Kendrick, C. S. Yannoni, and D. Rugar, J. Vac. Sci. Technol. B 14, 1197 (1996). D. Rugar, O. Zuger, S. Hoen, C. S. Yannoni, H. M. Vieth, and R. D. Kendrick, Force Detection of Nuclear Magnetic Resonance, Science 264, 1560 (1994).

    Article  CAS  Google Scholar 

  207. M. A. Paesler and P. J. Moyer, Near Field Optics, Wiley-Interscience, New York (1996).

    Google Scholar 

  208. E. Betzig and J. K. Trautman, Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit, Science 257, 189 (1992).

    CAS  Google Scholar 

  209. E. Betzig, P. L. Finn, and J. S. Weiner, Combined Shear Force and Near-Field Scanning Optical Microscopy, Appl. Phys. Lett. 60, 2484 (1992).

    Article  CAS  Google Scholar 

  210. N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, T. Faulkner, F. B. Segerink, K. O. van der Werf, B. G. De Grooth, and B. T. Bölger, Operation of a Scanning Near-Field Optical Microscope in Reflection in Combination with a Scanning Force Microscope, Proc. SPIE 1639, 36 (1992).

    Google Scholar 

  211. K. Nakajima, H. Muramatsu, N. Chiba, T. Ataka, and M. Fujihara, Optical Processing by Scanning Near-Field Optical Atomic Force Microscopy, Thin Solid Films 273, 327 (1996).

    Article  CAS  Google Scholar 

  212. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution, Science 269, 1083 (1995).

    CAS  Google Scholar 

  213. D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, and S. Leblanc, External and Internal Reflection Near Field Microscopy: Experiments and Results, Appl. Opt. 29, 3734 (1990).

    Google Scholar 

  214. M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hansch, Scanning Plasmon Near-Field Microscope, Phys. Rev. Lett. 68, 476 (1992).

    Article  CAS  Google Scholar 

  215. C. C. Williams and H. K. Wickramasinghe, Scanning Thermal Profiler, Appl. Phys. Lett. 49, 1587 (1986).

    Article  Google Scholar 

  216. J. M. R. Weaver, L. M. Walpita, and H. K. Wickramasinghe, Optical Absorption Microscopy and Spectroscopy With Nanometre Resolution, Nature 342, 783 (1989).

    Article  CAS  Google Scholar 

  217. C. C. Williams and H. K. Wickramasinghe, Scanning Chemical Potential Microscope: A New Technique For Atomic Force Scale Surface Investigation, J. Vac. Sci. Technol. B 9, 537 (1991).

    Article  CAS  Google Scholar 

  218. C. C. Williams, J. Slinkman, W. P. Hough, and H. K. Wickramasinghe, Lateral Dopant Profiling With 200 nm Resolution By Scanning Capacitance Microscopy, Appl. Phys. Lett. 55, 1662 (1989).

    CAS  Google Scholar 

  219. R. C. Barrett and C. F. Quate, Charge Storage in a Nitride-Oxide-Silicon Medium by Scanning Capacitance Microscopy, J. Appl. Phys. 70, 2725 (1991).

    Article  CAS  Google Scholar 

  220. A. J. Bard, Fu-Ren Fan, J. Kwak, and O. Lev, Scanning Electrochemical Microscopy. Introduction and Principles, Anal. Chem. 61, 132 (1989).

    Article  CAS  Google Scholar 

  221. P. K. Hansma, B. Drake, O. Marti, A. C. Gould, and C. B. Prater, The Scanning Ion-Conductance Microscope, Science 243, 641 (1989).

    CAS  Google Scholar 

  222. K. Keilmann, D. W. van der Weide, T. Eichelkamp, R. Merz, and D. Stöckle, Extreme Sub-Wavelength Resolution with a Scanning Radio-Frequency Transmission Microscope, Opt. Comm. 129, 15 (1996).

    CAS  Google Scholar 

  223. J. A. Dagata, A. C. Diebold, C. K. Shin, and R. J. Colton, eds., Workshop Summary Report: Industrial Applications of Scanned Probe Microscopy (IASPM), NISTIR 5550, National Institute of Standards and Technology, Gaithersburg, MD (1994).

    Google Scholar 

  224. J. A. Dagata, A. C. Diebold, C. K. Shih, and R. J. Colton, eds., Summary Report: Second Workshop on IASPM, NISTIR 5752, NIST, Gaithersburg, MD (1995).

    Google Scholar 

  225. P. Hopkins and K. Babcock, AFM Pole Tip Recession Measurements of Magnetic Recording Heads, in: Technical Program, Fourth Workshop on IASPM, Gaithersburg, MD, May 6–8 (1997), p. 21.

    Google Scholar 

  226. W. Morris, Scanning Probe Microscopy of Compact Disks, in: Technical Program, Fourth Workshop on IASPM, Gaithersburg, MD, May 6–8 (1997), p. 18.

    Google Scholar 

  227. H. M. Marchman, Nanometer-Scale Dimensional Metrology Using Non-Contact-AFM, in: Technical Program, Third Workshop on IASPM, Gaithersburg, MD, May 2–3 (1996).

    Google Scholar 

  228. H. M. Marchman, Scanned Probe Metrology and Its Application to CD SEM Matching, in: Technical Program, Fourth Workshop on IASPM, Gaithersburg, MD, May 6–8 (1997), p. 13.

    Google Scholar 

  229. N. T. Sullivan, Current and Future Applications of In-line Atomic Force Microscopy for Semiconductor Wafer Processing, in: Summary Report: Second Workshop on IASPM, NISTIR 5752 (J. A. Dagata, A. C. Diebold, C. K. Shih, and R. J. Colton, eds.), NIST, Gaithersburg, MD (1995).

    Google Scholar 

  230. J. E. Griffith and D. A. Grigg, Dimensional Metrology with Scanning Probe Microscopes, J. Appl. Phys. 74, R83 (1993).

    Article  Google Scholar 

  231. J. A. Dagata, SPM Based Metrology in the Semiconductor Industry, Future Fab Int. 1(1), 263 (1996).

    Google Scholar 

  232. M. Niwa and H. Iwasaki, SiO 2 Si Interfaces Studied by STM, Jpn. J. Appl. Phys. 28, L2320 (1986).

    Google Scholar 

  233. C. G. Masi, Scanning Probe Microscopy Earns Its Keep in Industry, R&D Mag., p. 22 (March 1997).

    Google Scholar 

  234. R. C. Barrett and C. F. Quate, Imaging Polished Sapphire with Atomic Force Microscopy, J. Vac. Sci. Technol. A 8, 400 (1990).

    Article  CAS  Google Scholar 

  235. S. H. Cohen, M. T. Bray, and M. L. Lightbody, eds., Atomic Force Microscopy/Scanning Tunneling Microscopy, Plenum Press, New York (1994).

    Google Scholar 

  236. L. A. Bottomley, J. E. Coury, and P. N. First, Scanning Probe Microscopy, Anal. Chem. 68, 185R (1996); see references therein.

    Article  Google Scholar 

  237. H. Fuchs, ed., Proceedings of the First Workshop on Development and Industrial Applications of Scanning Probe Microscopes (SXM-1), Thin Solid Films 264, 135 (1995).

    Google Scholar 

  238. B. Bhushan, ed., Handbook of Micro/Nanotribology, CRC Press, Boca Raton, FL (1995).

    Google Scholar 

  239. Papers presented at the SXM 2 Workshop, Vienna, Austria, Surface and Interface Analysis 25, 481 ff (1997).

    Google Scholar 

  240. D. L. Windt, W. K. Waskiewicz, and J. E. Griffith, Surface Finish Requirements for Soft X-Ray Mirrors, Appl. Opt. 33, 2025 (1994).

    Article  Google Scholar 

  241. E. Spiller, R. A. McCorkle, J. S. Wilczynski, L. Golub, G. Nystrom, P. Z. Takacs, and C. Welsch, Normal Incidence Soft X-Ray Telescopes, Opt. Eng. 30, 1109 (1991).

    CAS  Google Scholar 

  242. C. R. Kurkjian, R. A. Frantz, and H. H. Yuce, Light Guide Fibers: Problems and Prospects, Opt. Photon. News 8(7), 35 (1997).

    Article  Google Scholar 

  243. Y. Namba, Chubu University Report, Kasagai, Japan (1996).

    Google Scholar 

  244. V. C. Venkatesh, F. Fang, and W. K. Chee, On Mirror Finishing Obtained With and Without Polishing, CIRP Ann. 46/1, 505 (1997).

    Google Scholar 

  245. P. G. Burkhalter, D. B. Brown, J. V. Gilfrich, J. H. Konnert, P. D’Antonio, H. Rosenstock, L. M. Shirey, M. Thompson, and V. Elings, Surface Characterization of Multilayer X-Ray Diffraction Specimens, J. Vac. Sci. Technol. B 9, 845 (1991).

    Article  CAS  Google Scholar 

  246. O. Citterio, F. Mazzoleni, E. Monticone, and G. B. Picotto, Surface Characterisation of Electroformed Mirrors for an X-Ray Telescope, Surf. Sci. 337, 98 (1997).

    Google Scholar 

  247. T. Oshio, Y. Sakai, S. Ehara, and K. Takashima, STM Observation of Grating Surfaces, Modern Phys. Lett. B4, 181 (1990).

    Google Scholar 

  248. D. A. Lucca, Y. W. Seo, and R. L. Rhorer, Aspects of Surface Generation in Orthogonal Ultraprecision Machining, CIRP Ann. 43/1, 43 (1994).

    Google Scholar 

  249. E. Brinksmeier, R. Hoper, and O. Riemer, Characterisation of Micromachined Surfaces by Atomic Force Microscopy, Ind. Diam. Rev. 2, 59 (1996).

    Google Scholar 

  250. Y. Ichida and K. Kishi, Nanotopography of Ultraprecise Ground Surface of Fine Ceramics Using Atomic Force Microscope, CIRP Ann. 42/1, 647 (1993).

    Google Scholar 

  251. M. Touge and T. Matsuo, Removal Rate and Surface Roughness in High-Precision Lapping of Mn-Zn Ferrite, CIRP Ann. 45/1, 307 (1990).

    Google Scholar 

  252. L. DeChiffre, H. N. Hansen, and A. Bronstein, Investigation on the Surface Topography in Polishing Using Atomic Force Microscopy, CIRP Ann. 45/1, 523 (1996).

    Google Scholar 

  253. R. Miranda, N. Garcia, A. M. Baro, R. Garcia, J. L. Pena, and H. Rohrer, Technological Applications of Scanning Tunneling Microscopy at Atmospheric Pressure, Appl. Phys. Lett. 47, 367 (1985).

    Article  CAS  Google Scholar 

  254. I. Heyvaert, E. Osquiguil, C. Van Haesendonck, and Y. Bruynseraede, Etching of Screw Dislocations in Yba 2 Cu 2 O 7 Films With a Scanning Tunneling Microscope, Appl. Phys. Lett. 61, 111 (1992).

    Article  CAS  Google Scholar 

  255. J. Krim, I. Heyvaert, C. Van Haesendonck, and Y. Bruynseraede, Scanning Tunneling Microscopy Observation of Self-Affine Fractal Roughness in Ion-Bombarded Film Surfaces, Phys. Rev. Lett. 70, 57 (1993).

    Article  CAS  Google Scholar 

  256. C. Schönenberger, S. F. Alvarado, and C. Ortiz, Scanning Tunneling Microscopy as a Tool to Study Surface Roughness of Sputtered Thin Films, J. Appl. Phys. 66, 4258 (1989).

    Google Scholar 

  257. D. R. Denley, Scanning Tunneling Microscopy of Rough Surfaces, J. Vac. Sci. Technol. A8, 603 (1990).

    Google Scholar 

  258. N. P. Suh and M. Mosleh, The Minimum Coefficient of Friction: What Is It?, CIRP Ann. 43/1, 491 (1994).

    Google Scholar 

  259. T. L. Altshuler, Examination of Plain Carbon Steels Using An Atomic Force Microscope, in: Atomic Force Microscopy/Scanning Tunneling Microscopy (S. H. Cohen, M. T. Bray, and M. L. Lightbody, eds.), Plenum Press, New York (1994), p. 167

    Google Scholar 

  260. R. Sonnenfeld, J. Schneir, and P. K. Hansma, Atomic-Resolution Microscopy in Water, Science 232, 211 (1986).

    CAS  Google Scholar 

  261. H. Y. Liu, F. R. Fan, C. W. Lin, and A. J. Bard, Scanning Electrochemical and Tunneling Ultramicroelectrode Microscope for High-Resolution Examination of Electrode Surfaces in Solution, J. Am. Chem. Soc. 108, 3838 (1986).

    CAS  Google Scholar 

  262. R. Sonnenfeld, J. Schneir, and P. K. Hansma, Scanning Tunneling Microscopy: A Natural for Electrochemistry, in: Modern Aspects of Electrochemistry, Vol. 21 (R. E. White and J. O’M. Bockris, eds.), Plenum Press, Oxford (1990), p. 1.

    Google Scholar 

  263. S. Manne, H. J. Butt, S. A. C. Could, and P. K. Hansma, Imaging Metal Atoms in Air and Water Using the Atomic Force Microscope, Appl. Phys. Lett. 56, 1758 (1990).

    Article  CAS  Google Scholar 

  264. S. Manne, P. K. Hansma, J. Massie, V. B. Elings, and A. A. Gewirth, Atomic-Resolution Electrochemistry With the Atomic Force Microscope—Copper Deposited on Gold, Science 251, 183 (1991).

    CAS  Google Scholar 

  265. C. J. Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press, New York (1993), Chaps. 15, 16.

    Google Scholar 

  266. M. P. Soriaga, J. A. Schimpf, A. Carrasquillo Jr., J. B. Abreu, W. Temesghen, R. J. Barriga, J. J. Jeng, K. Sashikata, and K. Itaya, Electrochemistry of the I-on-Pd Single-Crystal Interface: Studies by UHV-EC and In Situ STM, Surf. Sci. 335, 273 (1995).

    Article  CAS  Google Scholar 

  267. J. Itoh, Y. Nazuka, S. Kanemaru, T. Inuoe, H. Yokoyama, and K. Shimizu, Microscopic Characterization of Field Emitter Array Structure and Work Function by Scanning Maxwell-stress Microscopy, J. Vac. Sci. Technol. B 14, 2105 (1996).

    CAS  Google Scholar 

  268. J. A. Dagata, Evaluation of Scanning Maxwell-stress Microscopy for SPM-based Nanoelectronics, Nanotechnology 8 (1997).

    Google Scholar 

  269. H. J. Mamin, S. Chiang, H. Birk, P. H. Guethner, and D. Rugar, Gold Deposition from a Scanning Tunneling Microscope Tip, J. Vac. Sci. Technol. B 9, 1398 (1991).

    Article  CAS  Google Scholar 

  270. I. Fujiwara, S. Kojima, A. Machida, and J. Seto, High Density Charge Storage Memory with Semiconductor Nonvolatile Memory Media by Scanning Probe Microscopy, SP-NANO: Tsukaba Workshop on Scanning Probe-based Nanoelectronics, Tsukuba, Japan, December (1996), p. 21.

    Google Scholar 

  271. S. Hosaka, A. Kikukawa, H. Koyanagi, T. Shintani, K. Nakamura, and K. Etoh, SPM-based Data Storage for Ultrahigh Density Recording, SP-NANO: Tsukaba Workshop on Scanning Probe-based Nanoelectronics, Tsukuba, Japan, December (1996), p. 23.

    Google Scholar 

  272. J. A. Dagata, Device Fabrication by Scanned Probe Oxidation, Science 270, 1625 (1995).

    CAS  Google Scholar 

  273. E. S. Snow and P. M. Campbell, AFM Fabrication of Sub-10-Nanometer Metal-Oxide Devices with in Situ Control of Electrical Properties, Science 270, 1639 (1995).

    CAS  Google Scholar 

  274. K. Matsumoto, S. Takahashi, M. Ishii, M. Hoshi, A. Kurokawa, S. Ichimura, and A. Ando, Application of STM Nanometer-size Oxidation Process to Planar-type MIM Diode, Jpn. J. Appl. Phys. 34, 1387 (1995).

    CAS  Google Scholar 

  275. W. Hillman, U. Brand, and M. Krystek, Capabilities and Limitations of Interference Microscopy for Two-and Three-Dimensional Surface Measuring Technology, Measurement 19, 95–102 (1996).

    Google Scholar 

  276. R. Krüer and M. Krystek, Diamond Turned Surface Roughness Standards for the Calibration of Interference Microscopes, Proceedings of the Seventh International Conference on Metrology and Properties of Engineering Surfaces (B. G. Rosen and R. J. Crafoord, eds.), Chalmers University of Technology, Göteborg, Sweden (1997), addendum pp. 1–3.

    Google Scholar 

  277. E. L. Church, The Measurement of Surface Texture and Topography by Differential Light Scattering, Wear 57, 93–105 (1979).

    Article  Google Scholar 

  278. M. Stedman, Basis for Comparing the Performance of Surface-Measuring Machines, Prec. Eng. 9, 149–152 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vorburger, T.V., Dagata, J.A., Wilkening, G., Iizuka, K. (2002). Characterization of Surface Topography. In: Czanderna, A.W., Madey, T.E., Powell, C.J. (eds) Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis. Methods of Surface Characterization, vol 5. Springer, Boston, MA. https://doi.org/10.1007/0-306-46914-6_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46914-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45896-5

  • Online ISBN: 978-0-306-46914-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics