Skip to main content

Part of the book series: Methods of Surface Characterization ((MOSC,volume 4))

  • 384 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Roth, Vacuum Technology, North-Holland, New York (1983).

    Google Scholar 

  2. G. W. Rubloff, Photoemission studies of time-resolved surface reactions: Isothermal desorption of CO from Ni(111), Surf. Sci. 89, 566 (1979).

    Article  CAS  Google Scholar 

  3. P. Pianetta, I. Lindau, C. M. Garner, and W. E. Spicer, The oxidation properties of GaAs(110) surfaces, Phys. Rev. Lett. 37, 1166 (1976).

    Article  CAS  Google Scholar 

  4. P. Pianetta, I. Lindau, C. M. Gamer, and W. E. Spicer, Chemisorption and oxidation studies of the (110) surfaces of GaAs, GaSb and InP, Phys. Rev. B 18, 2792 (1978).

    Article  CAS  Google Scholar 

  5. D. A. King and M. G. Wells, Molecular beam investigation of adsorption kinetics on bulk metal targets: Nitrogen on tungsten, Surf. Sci. 29, 454 (1972).

    Article  CAS  Google Scholar 

  6. T. E. Madey, Adsorption of Oxygen on W(100): Adsorption Kinetics and Electron Stimulated Desorption, Surf. Sci. 33, 355 (1972).

    Article  CAS  Google Scholar 

  7. J. Benziger and R. J. Madix, The Effects of carbon, oxygen, sulfur and potassium adlayers on CO and H2 adsorption on Fe(100). Surf. Sci. 94, 119 (1980).

    Article  CAS  Google Scholar 

  8. C. T. Campbell and S. M. VaIone, Design considerations for simple gas dosers in surface science applications, J. Vac. Sci. Technol. A 3, 408 (1985).

    Article  CAS  Google Scholar 

  9. D. C. Gray and H. H. Sawin, Design considerations for high-flux collisionally opaque molecular beams, J. Vac. Sci. Technol. A 10, 3229 (1992).

    CAS  Google Scholar 

  10. B. B. Dayton, Gas flow patterns at entrance and exit of cylindrical tubes, in: Proceedings of the 3rd AVS National Vacuum Symposium, Pergamon Press, (1957), p. 5.

    Google Scholar 

  11. W. Steckelmacher, Knudsen flow 75 years on: The current state of the art for flow of rarefied gases in tubes and systems, Rep. Prog. Phys. 49, 1083 (1986).

    Article  CAS  Google Scholar 

  12. J. A. Giordmaine and T. C. Wang, Molecular beam formation by long parallel tubes, J. Appl. Phys. 31, 463 (1960).

    Article  CAS  Google Scholar 

  13. R. H. Jones, D. R. Olander, and V. R. Kruger, Molecular-beam sources fabricated from multichan-nel arrays. I. Angular distributions and peaking factors, J. Appl. Phys. 40, 4641 (1969).

    Google Scholar 

  14. W. Steckelmacher, R. Strong, and M. W. Lucas, A simple atomic or molecular beam as target for ion-atom collision studies, J. Phys. D: Appl. Phys. 11, 1553 (1978).

    CAS  Google Scholar 

  15. A. Winkler and J. T. Yates, Capillary array dosing and angular desorption distribution measure-ments: A general formalism, J. Vac Sci. Technol. A 6, 2929 (1988).

    Article  CAS  Google Scholar 

  16. S. Adamson and J. F. McGilp, Measurement of Gas Flux Distributions from Single Capillaries Using a Modified, UHV-compatible Ion Gauge, and Comparison with Theory, Vacuum 36, 227 (1986).

    Article  CAS  Google Scholar 

  17. S. Adamson, C. O’Carroll, and J. F. McGilp, The Spatial Distribution of Flux Produced by Single Capillary Gas Dosers, Vacuum 38, 341 (1988).

    CAS  Google Scholar 

  18. S. Adamson, C. O’Carroll, and J. F. McGilp, The Angular Distribution of Thermal Molecular Beams Formed by Single Capillaries in the Molecular Flow Regime, Vacuum 38, 463 (1988).

    CAS  Google Scholar 

  19. A. M. Glines, R. N. Carter, and A. B. Anton, An alternative for gas dosing in ultrahigh vacuum adsorption studies, Rev. Sci. Instrum. 63, 1826 (1992).

    Article  CAS  Google Scholar 

  20. D. R. Olander, Molecular-beam sources fabricated from multichannel arrays. II. Effect of source size and alignment, J. Appl. Phys. 40, 4650 (1969).

    Article  Google Scholar 

  21. D. R. Olander and V. R. Kruger, Molecular beam sources fabricated from multichannel arrays. III. The exit density problem, J. Appl. Phys. 41, 2769 (1970).

    Google Scholar 

  22. H. C. W. Beijerinck and N. F. Verster, Velocity distribution and angular distribution of molecular beams from multichannel arrays, J. Appl. Phys. 46, 2083 (1975).

    Article  Google Scholar 

  23. M. J. Bozack, L. Muehlhoff, J. N. Russel, Jr., W. J. Choyke, and J. T. Yates, Jr., Methods in semiconductor surface chemistry, J. Vac. Sci. Technol. 5, 1 (1987).

    CAS  Google Scholar 

  24. D. A. Scheinowitz, K. Werner, and S. Radelaar, Capillary arrays with variable channel density: An improved gas injection system, J. Vac. Sci. Technol. B 12, 3228 (1994).

    CAS  Google Scholar 

  25. D. E. Ibbotson, T. S. Wittrig, and W. H. Weinberg, The chemisorption and decomposition of NO on the (110) surface of iridium, Surf. Sci. 110, 294 (1981).

    CAS  Google Scholar 

  26. M. A. Henderson, R. D. Ramsier, and J. T. Yates, Minimizing ultrahigh vacuum wall reactions of Fe(CO)5 by chemical pretreatment of the dosing system, J. Vac. Sci. Technol. A 9, 2785 (1991).

    CAS  Google Scholar 

  27. P. K. Leavitt and P. A. Thiel, A warning concerning the use of glass capillary arrays in gas dosing: Potential chemical reactions, J. Vac. Sci. Technol. A 8, 148 (1990).

    CAS  Google Scholar 

  28. E. Apen, R. Wentz, F. Pompei, and J. L. Gland, Glass and polymer based dosing system for the introduction of reactive gases into ultrahigh vacuum, J. Vac. Sci. Technol. B 12, 2946 (1994).

    CAS  Google Scholar 

  29. M. A. Mendicino and E. G. Seebauer, Use of Teflon for minimizing spurious reactions in gas dosing and detection systems, J. Vac. Sci. Technol. A 10, 3590 (1992).

    CAS  Google Scholar 

  30. F. C. Henn, M. E. Bussell, and C. T. Campbell, A simple means for reproducibly dosing low vapor pressure and/or reactive gases to surfaces in ultrahigh vacuum, J. Vac. Sci. Technol. A 9, 10 (1991).

    Article  CAS  Google Scholar 

  31. P. L. Hagans, B. M. DeKoven, and J. L. Womack, A laser drilled aperture for use in an ultrahigh vacuum gas doser, J. Vac. Sci Technol. A 7, 3375 (1989).

    Article  CAS  Google Scholar 

  32. S. M. Gates, J. N. Russell, Jr., and J. T. Yates, Jr., Scanning kinetic spectroscopy (SKS): A new method for investigation of surface reaction processes, Surf. Sci. 159, 233 (1985).

    Article  CAS  Google Scholar 

  33. R. C. Eden, Photoemission studies of the electronic band structures of gallium arsenide, gallium phosphide, and silicon, Stanford University, (1967), p. 303.

    Google Scholar 

  34. P. E. Gregory, P. Chye, H. Sunami, and W. E. Spicer, The oxidation of Cs-UV photoemission studies, J. Appl. Phys. 46, 3525 (1975).

    Article  CAS  Google Scholar 

  35. N. Szydlo, R. Poirier, and M. Kleefstra, Reverse I-V characteristics of the Na-Si Schottky barrier, Appl. Phys. Lett. 17, 417 (1970).

    Article  Google Scholar 

  36. R. D. Mathis Company, Thin Film Evaporation Source Guide, Long Beach, CA (1987).

    Google Scholar 

  37. P. della Porta, C. Emili, and S. J. Hellier, Alkali metal generation and gas evolution from alkali metal dispensers, SAES Getters, TR 18 (1968).

    Google Scholar 

  38. M. Succi, R. Canino, and B. Ferrario, Atomic absorption evaporation flow rate measurements of alkali metal dispensers, Vacuum 35, 579 (1985).

    Article  CAS  Google Scholar 

  39. T. A. Giorgi, B. Ferrario, and B. Storey, An updated review of getters and gettering, J. Vac. Sci. Technol. A 3, 417 (1985).

    Article  CAS  Google Scholar 

  40. R. A. dePaola, J. Hrbek, and F. M. Hoffmann, Potassium promoted C-O bond weakening on Ru(001). I. Through-metal interaction at low potassium coverage, J. Chem. Phys. 82, 2484 (1985).

    CAS  Google Scholar 

  41. T. K. Sham, M.-L. Shek, G.-Q. Xu, and J. Hrbek, Coverage dependence of photoemission core levels of alkali-metal overlayers, J. Vac. Sci. Technol. A 7, 2191 (1989).

    Article  CAS  Google Scholar 

  42. S. D. Parker, Lithium adsorption on Ag(111): Characterization by AES and work function changes, Surf. Sci. 157, 261 (1985).

    Article  CAS  Google Scholar 

  43. E. J. Nelson, T. Kendelewicz, P. Liu, and P. Pianetta, New Surface Phases for Potassium Adatoms on Cleaved Si(111), Surf. Sci. 380, 365 (1997).

    Article  CAS  Google Scholar 

  44. R. Cao, H. Tang, and P. Pianetta, Negative Electron Affinity on the GaAs(110) with Cs and NF3: A Surface Science Study, SPIE Proc. 2550, 132 (1995).

    CAS  Google Scholar 

  45. R. L. Bell and W. E. Spicer, 3-5 compound photocathodes: A new family of photoemitters with greatly improved performance, Proc. IEEE 58, 1788 (1970).

    CAS  Google Scholar 

  46. SAES Getters, Alkali Metal Dispensers, Milan, Italy (1983).

    Google Scholar 

  47. J. Lilja, M. Toivonen, P. Wysocki, and M. Pessa, Growth of Li-doped ZnSe by molecular beam epitaxy using an alkali metal dispenser, Vacuum 40, 491 (1990).

    Article  CAS  Google Scholar 

  48. E J. Esposto, K. Griffiths, P. R. Norton, and R. S. Timsit, Simple source of Li metal for evaporators in ultrahigh vacuum (UHV) applications, J. Vac. Sci. Technol. B 12, 3245 (1994).

    CAS  Google Scholar 

  49. A. Septier, F. Sabary, J. Dudek, and A. Boumiz, An alkali dispenser photocathode (AI-Li)-Ag-O-Li, C. R. Acad. Sci. Paris 314, 569 (1992).

    CAS  Google Scholar 

  50. S. Doniach and M. Sunjic, Many-electron singularity in X-ray photoemission and X-ray line spectra from metals, J. Phys. C (Sol. State Phys.) 3, 285 (1970).

    CAS  Google Scholar 

  51. B. Reihl and K. 0. Magnusson, Surface electronic structure of K on Si(111)2X1 as a function of potassium coverage, Phys. Rev. B 42, 11839 (1990).

    Article  CAS  Google Scholar 

  52. R. L. Gerlach and T. N. Rhodin, Binding and charge transfer associated with alkali metal adsorption on single crystal nickel surface, Surf. Sci. 19, 403 (1970).

    Article  CAS  Google Scholar 

  53. G. W. Gobeli and F. G. Allen, Surface measurements on freshly cleaved silicon p-n junctions, J. Phys. Chem. Solids 14, 23 (1960).

    Article  CAS  Google Scholar 

  54. T. E. Gallon, I. G. Higginbotham, M. Prutton, and H. Tokutaka, The (100) surfaces of alkali halides, Surf. Sci. 21, 224 (1970).

    Article  CAS  Google Scholar 

  55. M. Henzler, Leed investigation of step arrays on cleaved germanium (111) surfaces, Surf. Sci. 19, 159 (1970).

    Article  CAS  Google Scholar 

  56. J. W. T. Ridgway and D. Haneman, Auger spectra and Leed patterns from vacuum cleaved silicon crystals with calibrated deposits of iron, Surf. Sci. 24, 451 (1971).

    Article  CAS  Google Scholar 

  57. R. Dorn, H. Luth, and G. J. Russell, Adsorption of oxygen on clean cleaved (110) gallium-arsenide surfaces, Phys. Rev. B 10, 5049 (1974).

    Article  CAS  Google Scholar 

  58. H. Froitzheim and H. Ibach, On the question of surface states on cleaved GaAs (110) surfaces, Surf. Sci. 47, 713 (1975).

    Article  CAS  Google Scholar 

  59. D. Haneman, Atomic Structure of Surfaces, in: Surface Physics of Phosphorous and Semicon-ductors (C. G. Scott and C. E. Reed, eds.), Academic Press, New York (1975), p. 1.

    Google Scholar 

  60. A. Huijser and J. van Laar, Work function variations of gallium arsenide cleaved single crystals, Surf. Sci. 52, 202 (1975).

    Article  CAS  Google Scholar 

  61. W. E. Spicer and P. E. Gregory, Surface and interface electronic structure of GaAs and other III-V compounds, Crit. Rev. Solid State Sci. 5, 231 (1975).

    Article  CAS  Google Scholar 

  62. E. E. Chaban and J. E. Rowe, Vacuum cleavage technique for the HP5950A ESCA spectrometer, J. Electron Spectrosc. 9, 329 (1976).

    CAS  Google Scholar 

  63. J. D. V. Otterloo, Some Schottky barriers on clean-cleaved silicon, Thesis, Delft University of Technology (1977).

    Google Scholar 

  64. R. D. Bringans and R. Z. Bachrach, in: Semiconductor Surface and Interface States, in Synchrotron Radiation Research (R. Z. Bachrach, ed.), Plenum, New York (1992), p. 127.

    Google Scholar 

  65. P. Mark, P. Pianetta, I. Lindau, and W. E. Spicer, A comparison of LEED intensity data from chemically polished and cleaved GaAs(110) surfaces, Surf. Sci. 69, 735 (1977).

    Article  CAS  Google Scholar 

  66. T. Angot, J. Suzanne, and J. Y. Hoarau, An original in situ cleaver for low temperature surface experiments, Rev. Sci. Instrum. 62, 1865 (1991).

    Article  Google Scholar 

  67. J. T. Dickinson, L. C. Jensen, and M. R. McKay, Neutral molecule emission from the fracture of crystalline MgO, J. Vac. Sci. Technol. A 5, 1162 (1987).

    CAS  Google Scholar 

  68. M. Henzler, The roughness of cleaved semiconductor surfaces, Surf. Sci. 36, 109 (1973).

    Article  CAS  Google Scholar 

  69. W. Gudat, D. E. Eastman, and J. J. Freeouf, Empty surface states on semiconductors: Their interactions with metal overlayers and their relation to Schottky bamers, J. Vac. Sci. Technol. 13, 250 (1976).

    Google Scholar 

  70. W. E. Spicer, I. Lindau, P. E. Gregory, C. M. Gamer, P. Pianetta, and P. W. Chye, Surface and interface electronic structure of GaAs and other III-V compounds, J. Vac. Sci. Technol. 13, 780 (1976).

    CAS  Google Scholar 

  71. L. J. Whitman, J. A. Stroscio, R. A. Dragoset, and R. J. Celotta, Scanning-tunneling-microscopy study of InSb(110), Phys. Rev. B 42, 7288 (1990).

    Article  CAS  Google Scholar 

  72. B. M. Trafas, Y.-N. Yang, R. L. Siefert, and J. H. Weaver, Scanning tunneling microscopy of Ag growth on GaAs(110) at 300 K: From clusters to crystallites, Phys. Rev. B 43, 14107 (1991).

    CAS  Google Scholar 

  73. W. Monch, in: Semiconductor Surfaces and Interfaces, Springer Series in Surface Sciences, Vol. 26 (G. Ertl, ed.), Springer, Berlin (1995).

    Google Scholar 

  74. R. A. Schultz, M. C. Jensen, and R. C. Bradt, Single crystal cleavage of brittle materials, Int. J. Fracture 65, 291 (1994).

    Article  CAS  Google Scholar 

  75. W. A. Harrison, Electronic Structure and the Properties of Solids, Freeman, San Francisco (1980).

    Google Scholar 

  76. D. Haneman, Surfaces ofsilicon, Rep. Prog. Phys. 50, 1045 (1987).

    Article  CAS  Google Scholar 

  77. R. M. Tromp, L. Smit, and J. F. van der Veen, Si(111)-(2X1) surface: buckling, chains, or molecules?, Phys. Rev. Lett. 51, 1672 (1983).

    CAS  Google Scholar 

  78. R. E. Reed-Hill, Physical Metallurgy Principles, Van Nostrand, Princeton, NJ (1973).

    Google Scholar 

  79. M. Prutton, Introduction to Surface Physics, Oxford University Press, Oxford (1994).

    Google Scholar 

  80. J. J. Gilman, Direct measurement of the surface energies of crystals, J. Appl. Phys. 31, 2208 (1960).

    CAS  Google Scholar 

  81. J. E. Cordwell and D. Hull, Observations of(100) cleavage in <110> axis tungsten single crystals, Phil. Mag. 26, 215 (1972).

    CAS  Google Scholar 

  82. N. M. Giallourakis, D. K. Matlock, and G. Gauss, A cryogenic fracture technique for characterizing zinc-coated steels, Metallography 23, 209 (1989).

    Article  CAS  Google Scholar 

  83. P. Bruesch, W. Foditsch, and F. Stucki, An in situ fracture stage for x-ray photoelectron spectroscopy and Auger electron spectroscopy studies of internal surfaces in polycrystalline materials, J. Vac. Sci. Technol. A 5, 3334 (1987).

    Google Scholar 

  84. R. D. Moorhead, Mechanical testing: In situ fracture device for Augerelectron spectroscopy, Rev. Sci. Instrum. 47, 455 (1976).

    Article  CAS  Google Scholar 

  85. G. S. Was, H. H. Tischner, and J. R. Martin, An in situ slow extension rate fracture stage for Auger electronspectroscopy, J. Vac. Sci. Technol. A 1, 1477 (1983).

    Article  Google Scholar 

  86. C. E. Kalnas, J. F, Mansfield, G. S. Was, and J. W. Jones, In situ bend fixture for deformation and fracture studies in the environmental scanning electron microscope, J. Vac. Sci. Technol. B 12, 883 (1994).

    CAS  Google Scholar 

  87. M. R. Barnes and L. D. Laude, A crystal cleaver and electron analyzer assembly for photoemission studies ofvacuum cleaved crystals, Rev. Sci. Instrum. 42, 1191 (1971).

    Article  CAS  Google Scholar 

  88. A. P. Janssen and A. Chambers, A crystal cleavage device for use in ked-Auger studies, J. Phys. E: Sci. Instrum. 7, 425 (1974).

    Article  Google Scholar 

  89. B. Dupoisson, P. Dumas, A. Steinbrunn, and J. C. Colson, Single crystal cleavage device adaptable to a UHV vessel, J. Phys. E: Sci. Instrum. 9, 266 (1976).

    Article  CAS  Google Scholar 

  90. R. Carr, New ultrahigh-vacuum cleaver for brittle materials, Rev. Sci. Instrum. 59, 989 (1988).

    Article  Google Scholar 

  91. C. Claeys, C. R. Henry, and C. Chapon, A crystal cleavage device for use with a standard UHV sample holderend, Meas. Sci. Technol. 2, 81 (1991).

    Article  Google Scholar 

  92. D. G. Li, N. S. McAlpine, and D. Haneman, Progression of cleavage in Si, Ge and GaAs, Appl. Surf. Sci. 65/66, 553 (1993).

    Google Scholar 

  93. N. B. Kindig and W. E. Spicer, Vacuum system and cleaving mechanism for photoemission measurement of CdS single crystals in the vacuum ultraviolet, Rev. Sci. Instrum. 36, 759 (1965).

    Article  CAS  Google Scholar 

  94. F. C. Hallberg, B. E. Woodgate, and J. S. J. Benedicto, Cleaving machines for soft and hard crystals, Rev. Sci. Instrum. 52, 759 (1981).

    Article  CAS  Google Scholar 

  95. Copper and Brass Sales, CBS-003-06-96-Revised, Detroit, MI.

    Google Scholar 

  96. P. Pianetta, I. Lindau, P. E. Gregory, C. M. Gamer, and W. E. Spicer, Valencebandstudies of clean and oxygen exposed GaAs(l10) surfaces, Surf. Sci. 72, 298 (1978).

    Article  CAS  Google Scholar 

  97. C. Kim, R. Cao, and P. Pianetta, Fermi Level Variation on GaAs(110) Surface with Sb Overlayer Studied with a Photoelectron Microscope, J. Vac. Sci. Technol B 11, 1575 (1993).

    CAS  Google Scholar 

  98. A. Humbert, M. Dayez, S. Granjeaud, P. Ricci, C. Chapon, and C. R. Henry, Ultrahigh vacuum and air observations ofPd clusters grown on clean graphite, J. Vac. Sci. Technol. B 9, 804 (1991).

    Article  CAS  Google Scholar 

  99. N. Nakayama, T. Kuramachi, T. Tanbo, H. Ueba, and C. Tatsuyama, AES, LEELS and XPS studies on the interface formation between layered semiconductors GaSe and InSe, Surf. Sci. 244, 58 (1991).

    Article  CAS  Google Scholar 

  100. R. H. Williams and A. J. McEvoy, Electron emission studies from GaSe surfaces, J. Vac. Sci. Technol. 9, 867 (1972).

    CAS  Google Scholar 

  101. D. E. Fowler, C. R. Brundle, J. Lerczak, and F. Holtzberg, Core and valence XPS spectra of clean, cleaved single crystals of YBa2Cu3O7, J. Electron Spectrosc. 52, 323 (1990).

    Article  CAS  Google Scholar 

  102. P. Akavoor, R. B. Phelps, and L. L. Kesmodel, Charging effects in measurements of high-tem-perature superconductors with high resolution electron energy loss spectroscopy, J. Vac. Sci. Technol. B 12, 587 (1994).

    CAS  Google Scholar 

  103. H. L. Edwards, J. T. Markert, and A. L. de Lozanne, Surface structure of YBa3Cu3O7–xprobed by reversed biased scanning tunneling microscopy, J. Vac. Sci. Technol. B 12, 1886 (1994).

    Article  CAS  Google Scholar 

  104. V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides, Cambridge University Press, Cambridge (1994).

    Google Scholar 

  105. W. Monch and P. P. Auer, On the geometrical structure of cleaved Si(111) surfaces, J. Vac. Sci. Technol. 15, 1230(1978).

    Google Scholar 

  106. K. 0. Magnusson, U. O. Karlsson, D. Straub, S. A. Flodstrom, and F. J. Himpsel, Angle-resolved inverse photoelectronspectroscopy studies of CdTe(110), CdS(1120) and CdSe(1120), Phys. Rev. B 36, 6566 (1987).

    Article  CAS  Google Scholar 

  107. H. Qu, J. Kanski, P. O. Nilsson, and U. 0. Karlsson, Angle resolved photoelectron spectroscopy of the surface electronic structure of ZnTe(110), Phys. Rev. B 43, 9843 (1991).

    CAS  Google Scholar 

  108. X. Yu, L. Vanzetti, G. Haugstad, A. Raisanen, and A. Franciosi, Inequivalent sites for Hg at the HgTe(110) surface, Surf. Sci. 275, 92 (1992).

    Article  CAS  Google Scholar 

  109. C. A. Papageorgopoulos, M. Kamaratos, A. Papageorgopoulos, A. Schellenberger, E. Holub-Krappe, C. Pettenkofer, and W. Jaegermann, Adsorption of Cs on WSe2 van der Waals surfaces: Temperature and sputter effects on growth properties, Surf. Sci. 275, 311 (1992).

    Article  Google Scholar 

  110. A. Klein, C. Pettenkofer, W. Jaegermann, M. Lux-Steiner, and E. Bucher, A photoemission study of barrier and transport properties ofthe interfaces ofAu and Cu with WSe2(0001) surfaces, Surf. Sci. 321, 19 (1994).

    Article  CAS  Google Scholar 

  111. J.-Y. Emery, L. Brahim-Ostmane, C. Hirlimann, and A. Chevy, Reflection high-energy electron diffraction studies of InSe and GaSe layered compounds grown by molecular beam epitaxy, J. Appl. Phys. 71, 3256 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pianetta, P.A. (2002). In Situ Processing by Gas or Alkali Metal Dosing and by Cleavage. In: Czanderna, A.W., Powell, C.J., Madey, T.E., Hercules, D.M., Yates, J.T. (eds) Specimen Handling, Preparation, and Treatments in Surface Characterization. Methods of Surface Characterization, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-306-46913-8_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-46913-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45887-3

  • Online ISBN: 978-0-306-46913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics