Skip to main content

Specimen Treatments: Surface Preparation of Metal Compound Materials (Mainly Oxides)

  • Chapter
Specimen Handling, Preparation, and Treatments in Surface Characterization

Part of the book series: Methods of Surface Characterization ((MOSC,volume 4))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides, Cambridge University Press, Cambridge (1994).

    Google Scholar 

  2. T. M. Parrill and Y. W. Chung, Effects of initial silicon carbide surface composition on room temperature Au/b-SiC(001) interface formation, Surf. Sci. 271, 395–406 (1992).

    Article  CAS  Google Scholar 

  3. P. W. Tasker, The stability of ionic crystal surfaces, J. Phys. C: Solid State Phys. 12, 4977–4984 (1979).

    Article  CAS  Google Scholar 

  4. J.P. LaFemina, Total energy computations of oxide surface reconstructions, Crit. Rev. Surf. Chem. 3(3/4), 297–386 (1994).

    CAS  Google Scholar 

  5. M. Szymonski, J. Kolodziej, Z. Postawa, P. Czuba, and P. Piatkowski, Electron-stimulated desorption from ionic crystal surfaces, Prog. Surf. Sci. 48(1/4), 83–96 (1995).

    CAS  Google Scholar 

  6. M. L. Knotek and P. J. Feibelman, Stability of ionically bonded surfaces in ionizing environments, Surf. Sci. 90,78–90 (1979).

    Article  CAS  Google Scholar 

  7. M. A. Barteau, Organic reactions on well-defined oxide surfaces, Chem. Rev. 96(4), 1413 (1996).

    Article  CAS  Google Scholar 

  8. Uncover (http://uncweb.carl.org).

  9. M. D. Antonik and R. J. Lad, Faceting, reconstruction, and defect microstructure at ceramic surfaces revealed by atomic force microscopy, J. Vac. Sci. Technol. A 10(4), 669–673 (1992).

    Article  CAS  Google Scholar 

  10. J. Kiihnle and O. Weis, Mechanochemical superpolishing of diamond using NaNO3 or KNO3 as oxidizing agents, Surf. Sci. 340, 16–22 (1995).

    Google Scholar 

  11. B. Hader and 0. Weis, Superpolishing sapphire: A method to produce atomically flat and damage free surfaces, Surf. Sci. 220, 118–130 (1989).

    Article  CAS  Google Scholar 

  12. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Atomic control of the SrTiO3 crystal surface, Science 266, 1540–1542 (1994).

    CAS  Google Scholar 

  13. A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Photocatalysis on TiO2 surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev. 95, 735–758 (1995).

    Article  CAS  Google Scholar 

  14. M. B. Hugenschmidt, L. Gamble, and C. T. Campbell, The interaction of H2O with a TiO2( 110) surface, Surf. Sci. 302, 329–340 (1994).

    Article  CAS  Google Scholar 

  15. M. Grunze, O. Ruppender, and O. Elshazly, Chemical cleaning of metal surfaces in vacuum systems by exposure to reactive gases, J. Vac. Sci. Technol. A 6(3), 1266–1275 (1988).

    Article  CAS  Google Scholar 

  16. G. Betz and G. K. Wehner, in: Sputtering of Multicomponent Materials, Sputtering by Particle Bombardment II (R. Behrisch, ed.), Springer, Berlin (1983), pp. 11–90.

    Google Scholar 

  17. J. B. Malherbe, S. Hofmann, and J. M. Sanz, Preferential sputtering of oxides: A comparison of model predictions with experimental data, Appl. Surf. Sci. 27, 355–365 (1986).

    Article  CAS  Google Scholar 

  18. M. A. Langell, Preferential sputtering in the 3d tran sition metal monoxides, Surf. Sci. 186, 323–338 (1987).

    CAS  Google Scholar 

  19. H. M. Naguib and R. Kelly, Criteria for bombardment-induced structural changes in non-metallic solids, Radiat. Effects 25, 1–12 (1975).

    CAS  Google Scholar 

  20. C. R. Brundle and J. Q. Broughton, in: The Chemical Physics of Solid Surfaces and Heterogenous Catalysis, Vol. 3, Part A, Chemisorption Systems (D. A. King and D. P. Woodruff, eds.), Elsevier, Amsterdam (1990), pp. 381–388.

    Google Scholar 

  21. R. M. Jaeger, H. Kuhlenbeck, H.-J. Freund, M. Wuttig, W. Hoffmann, R. Franchy, and H. Ibach, Formation ofa well-ordered aluminium oxide overlayer by oxidation of NiAl( 110), Surf. Sci. 259, 235–252 (1991).

    Article  CAS  Google Scholar 

  22. D. W. Goodman, Chemical and spectroscopic studies on metal oxide surfaces, J. Vac. Sci. Technol. 14(3), 1526–1531 (1996).

    CAS  Google Scholar 

  23. G. S. Herman, M. C. Gallagher, S. A. Joyce, and C. H. F. Peden, Structure of epitaxial thin TiOx films on W( 1 10) as studied by low energy electron diffraction and scanning tunneling microscopy, J. Vac. Sci. Technol. B 14(2), 1126–1130 (1996).

    Article  CAS  Google Scholar 

  24. Y. Wu, E. Garfunkel, and T. E. Madey, Growth of ultrathin Al2O3 films on Ru(0001) and Re(0001), J. Vac. Sci. Technol. A 14(4), 2554–2563 (1996).

    Article  CAS  Google Scholar 

  25. G. H. Vurens, V. Maurice, M. Salmeron, and G. A. Somorjai, Growth, structure and chemical properies of FeO overlayers on Pt(100) and Pt(111), Surf. Sci. 268, 170–178 (1992).

    Article  CAS  Google Scholar 

  26. Z. Zhang and V. E. Henrich, Cation-ligand hybridization for stoichiometric and reduced TiO2(110) surfaces determined by resonant photoemission, Phys. Rev. B 43(14), 12004–12011 (1991).

    CAS  Google Scholar 

  27. K. Marre and H. Neddermeyer, Growth of ordered thin films of NiO on Ag(110) and Au(111), Surf. Sci. 287/288, 995–999 (1993).

    Article  Google Scholar 

  28. H. Hannemann, C. A. Ventrice, Jr., T. Bertrams, A. Brodde, and H. Neddermeyer, Scanning tunneling microscopy on the growth of ordered NiO layers on Au(111), Phys. Stat. Sol. (a) 146, 289–297 (1994).

    CAS  Google Scholar 

  29. C. A. Ventrice, Jr., T. Bertrams, H. Hannemann, A. Brodde, and H. Neddermeyer, Stable reconstruction of the polar (111) surface of NiO on Au(111), Phys. Rev. B 49(8), 5773–5776 (1994).

    Article  CAS  Google Scholar 

  30. C. T. Campbell, Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties, Surf. Sci. Rep. 27(1–3),1–111(1997).

    CAS  Google Scholar 

  31. D. W. Goodman, Model Studies in Catalysis Using Surface Science Probes, Chem. Rev. 95, 523–536 (1995).

    Article  CAS  Google Scholar 

  32. L. P. Zhang, M. Kuhn, and U. Diebold, Growth, structure, and thermal properties of chromium oxide films on Pt(111), Surf. Sci. 375(1), 1–12 (1997).

    Article  CAS  Google Scholar 

  33. G. E. Poirier, B. K. Hance, and M. White, Identification of the facet planes of phase I TiO2(001) rutile by scanning tunneling microscopy and low energy electron diffraction, J. Vac. Sci. Technol. B 10(1), 6–15 (1992).

    Article  CAS  Google Scholar 

  34. G. W. Clark and L. L. Kesmodel, A scanning tunneling microscopy study of TiO2(001) surface reconstructions, Ultramicroscopy 41,77–82 (1992).

    Article  CAS  Google Scholar 

  35. D. C. Cronemeyer, Electrical and optical properties of rutile single crystals, Phys. Rev. 87(5), 876–886 (1952).

    Article  CAS  Google Scholar 

  36. Y. Gao, Y. Liang, and S. A. Chambers, Thermal stability and the role of oxygen vacancy defects in strong metal support interaction-Pt on Nb-doped TiO2(100), Surf. Sci. 365(3), 638–648 (1996).

    Article  CAS  Google Scholar 

  37. F. Pesty, H.-P. Steinriick, and T. E. Madey, Thermal stability of Pt films on TiO2(110): evidence for encapsulation, Surf. Sci. 339(112), 83–95 (1995).

    CAS  Google Scholar 

  38. V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Observation of two-dimensional phases associated with defect states on TiO2, Phys. Rev. Lett. 36(22), 1335–1338 (1976).

    Article  CAS  Google Scholar 

  39. J.-M. Pan, B. L. Maschhoff, U. Diebold, and T. E. Madey, The interaction of water, oxygen, and hydrogen with TiO2 (110) surfaces having different defect densities, J. Vac. Sci. Technol. A 10, 2470–2476 (1992).

    Article  CAS  Google Scholar 

  40. M. Li, W. Hebenstreit, and U. Diebold, Oxygen-induced restructuring of rutile TiO2 (110) surface, Surf. Sci. 414(1/2), L951–L959 (1998).

    CAS  Google Scholar 

  41. U. Diebold and T. E. Madey, TiO2 by XPS, Surf: Sci. Spectra 4(3), 227–231 (1998).

    Google Scholar 

  42. J. Mayer, E. Garfunkel, T. E. Madey, and U. Diebold, Titanium and reduced titania overlayers on titanium dioxide (110), J. Electr. Spectrosc. 73, 1–11 (1995).

    CAS  Google Scholar 

  43. U. Diebold, J. F. Anderson, K.-O. Ng, and D. Vanderbilt, Evidence for the tunneling site on transition metal oxides: TiO2(110), Phys. Rev. Lett. 77(7), 1322–1326 (1996).

    Article  CAS  Google Scholar 

  44. T. Matsumoto, T. Kawai, and S. Kawai, STM-imaging ofa SrTiO3 (100) surface with atomic-scale resolution, Surf. Sci. Lett. 278, L153–Ll58 (1992).

    Article  CAS  Google Scholar 

  45. H. Tanaka, T. Matsumoto, T. Kawai, and S. Kawai, Surface structure and electronic property of reduced SrTiO3(100) surface observed by scanning tunneling microscopy, Jpn. J. Appl. Phys. 32, 1405–1409 (1993).

    CAS  Google Scholar 

  46. T. Hikita, T. Hanada, and M. Kudo, Structure and electronic state ofthe TiO2 and SrO terminated SrTiO3 surfaces, Surf. Sci. 287/288, 377–381 (1993).

    Google Scholar 

  47. M. Yoshimoto, T. Maeda, K. Shimonzono, H. Koinuma, M. Shinohara, 0. Ishiyama, and F. Ohtani, Topmost surface analysis ofSrTiO3(001) by coaxial impact-collision ion scattering spectroscopy, Appl. Phys. Lett. 65(2), 3197–3199 (1994).

    Article  CAS  Google Scholar 

  48. D. M. Tench and D. O. Raleigh, Electrochemical processes on strontium titanate electrodes, Natl. Bureau of Standards Special Publication Vol. 455, NBS, Gaithersburg, MD (1975), pp. 229–240.

    Google Scholar 

  49. J. E. T. Andersen and P. J. M-ller, Impurity-induced 900°C (2x2) surface reconstruction of SrTiO3(100), Appl. Phys. Lett. 56(19), 1847 (1990).

    Article  CAS  Google Scholar 

  50. Y. Liang and D. A. Bonnell, Structures and chemistry ofthe annealed SrTiO3(001) surface, Surf. Sci. 310, 128–134 (1994).

    Article  CAS  Google Scholar 

  51. A. Hirata, K. Saiki, A. Koma, and A. Ando, Electronic structure of a SrO-terminated SrTiO3(100) surface, Surf. Sci. 319, 267–271 (1994).

    Article  CAS  Google Scholar 

  52. V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Surface defects and the electronic structure of SrTiO3 surfaces, Phys. Rev. B 17(12), 4908–4921 (1978).

    Article  CAS  Google Scholar 

  53. W. J. Lo and G. A. Somorjai, Temperature-dependent surface structure, composition, and electronic properties of the clean SrTiO3(111) crystal face: Low-energy electron diffraction, Auger-electron spectroscopy, electron energy loss, and ultraviolet-photoelectron spectroscopy studies, Phys. Rev. B 17(12), 4942–4950 (1978).

    Article  CAS  Google Scholar 

  54. S. M. Mukhopadhay and T. C. S. Chen, Surface properties of perovskites and their response to ion bombardment, J. Appl. Phys. 74(2), 872–876 (1993).

    Google Scholar 

  55. A. K. Green, J. Dancy, and E. Bauer, Insignificance of lattice misfit forepitaxy, J. Vac. Sci. Technol. 7(1), 159–163 (1970).

    Article  CAS  Google Scholar 

  56. K. Yagi and G. Hanjo, Roles of lattice fitting in epitaxy, Thin Solid Films 48, 137 (1978).

    Google Scholar 

  57. T. Hanada, M. Asano, and Y. Mitzutani, Epitaxial growth of Ag deposited on air-cleaved MgO(100) by molecular beam deposition, J. Crystal Growth 116, 243–250 (1992).

    Google Scholar 

  58. P. W. Palmberg, T. N. Rhodin, and C. J. Todd, Epitaxial growth ofgold and silver on magnesium oxide cleaved in ultrahigh vacuum, Appl. Phys. Lett. 11(7), 33–35 (1967).

    CAS  Google Scholar 

  59. J. B. Zhou, H. C. Lu, T. Gustafsson, and P. Haberle, Surface structure of MgO(001): a medium-energy ion scattering study, Surf. Sci. 302, 350–362 (1994).

    Article  CAS  Google Scholar 

  60. C. R. Henry, C. Chapron, C. Duriez, and S. Giorgio, Growth and morphology of palladium particles epitaxially deposited on a MgO(100) surface, Surf. Sci. 253, 177–189 (1991).

    Article  CAS  Google Scholar 

  61. M. Gajdardziska-Josifovska, P. A. Crozier, M. R. McCartney, and J. M. Cowley, Ca segregation and step modification on cleaved and annealed MgO(100) surfaces, Surf. Sci. 284, 186–199 (1993).

    Article  CAS  Google Scholar 

  62. D. G. Lord and M. Prutton, Electrons and the epitaxial growth of metals on alkali halides, Thin Solid Films 21, 341–357 (1974).

    Article  CAS  Google Scholar 

  63. P. A. Thiery, M. Liehr, J. J. Pireaux, and R. Caudano, Infrared optical constants of insulators determined by high-resolution electron energy loss spectroscopy, Phys. Rev. B 29(8), 4824–4826 (1984).

    Google Scholar 

  64. C. N. Satterfield, Heterogeneous Catalysis in Industrial Practice, McGraw-Hill, New York (1991).

    Google Scholar 

  65. M. F. Chung and H. E. Farnsworth, Investigations of surface stability of II-VI wurtzite compounds by LEED, Surf. Sci. 22, 93–110 (1970).

    CAS  Google Scholar 

  66. R. Davis, J. F. Walsh, C. A. Muryn, G. Thornton, V. R. Dhanak, and K. C. Prince, The orientation of formate and carbonate on ZnO, Surf. Sci. 298, L196–202 (1993).

    Article  CAS  Google Scholar 

  67. C. T. Campbell, D. A. Daube, and J. M. White, Cu/ZnO (0001) and ZnOx/Cu(11 1)model catalysts for methanol synthesis, Surf. Sci. 182, 458–476 (1987).

    Article  CAS  Google Scholar 

  68. A. Klein, Polare Eigenschaften von Zinkoxid-Kristallen, Z. Phys. 188, 352–360 (1965).

    CAS  Google Scholar 

  69. R. R. Gay, M. H. Nodine, V. E. Henrich, H. J. Zeiger, and E. L. Solomon, Photoelectron study of the interaction of CO with ZnO, J. Am. Chem. Soc. 102, 6752–6761 (1980).

    Article  CAS  Google Scholar 

  70. A. N. Mariano and R. E. Hanneman, Crystallographic polarity of ZnO crystals, J. Appl. Phys. 34(2), 384–388 (1963).

    Google Scholar 

  71. P. J. M-ller, S. A. Komolov, E. F. Lazneva, and E. H. Pedersen, CO2-intermediates in the COL/ZnO(0001) interface, Surf. Sci. 323, 102 108 (1995).

    Google Scholar 

  72. S.-C. Chang and P. Mark, The crystallography of the polar (0001)-Zn and (0001)-O surfaces of zinc oxide, Surf. Sci. 46, 293–300 (1974).

    Article  CAS  Google Scholar 

  73. S. V. Didzilius, K. D. Butcher, S. L. Cohen, and E. I. Solomon, Chemistry of copper overlayers on zinc oxide single-crystal surfaces: Model active sites for Cu/ZnO methanol synthesis, J. Am. Chem. Soc. 111, 7110–7123 (1989).

    Google Scholar 

  74. W. Göpel and U. Lampe, Influence of defects on the electronic structure of zinc oxide surfaces, Phys. Rev. B 22(12), 6447–6462 (1980).

    Google Scholar 

  75. P. J. M-ller, S. A. Komolov, and E. F. Lazneva, VLEED form aZnO(0001) substructure, Surf. Sci. 307–309, 1177–1181 (1994).

    Google Scholar 

  76. P. M. Thibado, G. S. Rohrer, and D. A. Bonnell, Experimental and simulated tunneling spectra of the polar ZnO surfaces, Surf. Sci. 318, 379–394 (1994).

    Article  CAS  Google Scholar 

  77. W. Göpel, R. S. Bauer, and G. Hansson, Ultraviolet photoemission studies of chemisorption and point defect formation on ZnO non-polar surfaces, Surf. Sci. 99, 138–158 (1980).

    Google Scholar 

  78. M. A. Barteau, Site requirements of reactions on oxide surfaces, J. Vac. Sci. Technol. A 11(4), 2162–2168 (1993).

    Article  CAS  Google Scholar 

  79. K. H. Ernst, A. Ludviksson, R. Zhang, J. Yoshihara, and C. T. Campbell, Growth model for metal films on oxide surfaces: Cu on ZnO (0001)-O, Phys. Rev. B 47(20), 13782–13796 (1993).

    Article  CAS  Google Scholar 

  80. M. Bäumer, D. Cappus, H. Kuhlenbeck, H.-J. Freund, G. Wilhelmi, A. Brodde, and H. Nedder-meyer, The structure of thin NiO(100) films grown on Ni(100) as determined by low-energy electron diffraction and scanning tunneling microscopy, Surf. Sci. 253, 116–128 (1991).

    Google Scholar 

  81. M. I. Buckett and L. D. Marks, Electron irradiation damage in NiO, Surf. Sci. 232, 353–366 (1990).

    Article  CAS  Google Scholar 

  82. P. H. Holloway and J. B. Hudson, Kinetics of the reaction of oxygen with clean nickel single crystal surfaces. I. Ni(100) surface, Surf. Sci. 43, 123–140 (1974).

    CAS  Google Scholar 

  83. M.-T. Liu, A. F. Armitage, and D. P. Woodruff, Anisotropy of initial oxidation kinetics of nickel single crystal surfaces, Surf. Sci. 114, 431–444 (1982).

    Article  CAS  Google Scholar 

  84. L. Eierdal, E Besenbacher, E. Lægsgaard, and I. Stensgaard, Interaction of oxygen with Ni(110) studied by scanning tunneling microscopy, Surf. Sci. 312, 31–53 (1994).

    Article  CAS  Google Scholar 

  85. W.-D. Wang, N. J. Wu, and P. A. Thiel, Structural steps to oxidation of Ni(100), J. Chem. Phys. 92(3), 2025–2035 (1990).

    Article  CAS  Google Scholar 

  86. L.-C. Dufour, A. El Ansarri, P. Dufour, and M. Vareille, Effect of thermal segregation on surface properties and reactivity ofchromium doped nickel oxide, Surf. Sci. 269/270, 1173–1179 (1992).

    Article  Google Scholar 

  87. M. A. Langell and M. H. Nassir, Stabilization of NiO(111) thin films by surface hydroxyls, J. Phys. Chem. 99, 4162–4169 (1995).

    Article  CAS  Google Scholar 

  88. C. Xu and D. W. Goodman, Surface chemistry of polar oxide surfaces: Formic acid on NiO(111), J. Chem. Soc. Far. Trans. 91(20), 3709–3715 (1995).

    Article  CAS  Google Scholar 

  89. M. Yoshimoto, H. Okhubo, N. Kanda, and H. Koinuma, Two-dimensional epitaxial growth of SrTiO3 films on carbon-free surface of Nb-doped SrTiO3 substrate by laser molecular beam epitaxy, Jpn. J. Appl. Phys. 31, 3664–3666 (1992).

    Article  CAS  Google Scholar 

  90. P. H. Holloway and J. B. Hudson, Kinetics of the reaction of oxygen with clean nickel single crystal surfaces. II. Ni(111) surface, Surf. Sci. 43(1), 141–149 (1974).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Diebold, U. (2002). Specimen Treatments: Surface Preparation of Metal Compound Materials (Mainly Oxides). In: Czanderna, A.W., Powell, C.J., Madey, T.E., Hercules, D.M., Yates, J.T. (eds) Specimen Handling, Preparation, and Treatments in Surface Characterization. Methods of Surface Characterization, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-306-46913-8_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-46913-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45887-3

  • Online ISBN: 978-0-306-46913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics