Skip to main content

Part of the book series: Methods of Surface Characterization ((MOSC,volume 4))

  • 366 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Tito Sasaki, A survey of vacuum material cleaning procedures: A subcommittee report of the American Vacuum Society Recommended Practices Committee, J. Vac. Sci. Technol. A 9(3), 2025–2035 (1991).

    Google Scholar 

  2. J. D. Herbert, A. E. Groome, and R. J. Reid, Study of cleaning agents for stainless steel for ultrahigh vacuum use, J. Vac. Sci. Technol. A 12(4), 1767–1771 (1994).

    Article  CAS  Google Scholar 

  3. E. A. Hill and K. D. Carter, Jr., Using ethyl lactate for precision cleaning of metal surfaces, Microcontamination 11, 27–31 (1993).

    Google Scholar 

  4. R. W. Hoenig and D. A. Kramer, Vapor pressure data for the solid and liquid element, RCA Rev., 30 (2), 285–305 (1968).

    Google Scholar 

  5. ASTM Standard E1078-90, Guide for Specimen Handling in Auger Electron Spectroscopy, X-ray Photoelectron Spectroscopy, and Secondary Ion Mass Spectrometry, 1994 Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, PA, 3 (1994), p. 776.

    Google Scholar 

  6. American Vacuum Society, Applied Surface Science Division (AVS/ASSD), New York.

    Google Scholar 

  7. R. Sherman, D. Hirt, and R. Vane, Surface cleaning with the carbon dioxide snow jet, J. Vac. Sci. Technol. A 12(4), 1876–1881 (1994).

    Article  CAS  Google Scholar 

  8. R. Sherman, J. Grob, and W. Whitlock, Dry surface cleaning using CO2snow, J. Vac. Sci. Technol. A B(9), 1970–1977 (1991).

    Google Scholar 

  9. L. Layden and D. Wadlow, High velocity carbon dioxide snow for cleaning vacuum surfaces, J. Vac. Sci. Technol. A 8(5), 1881–1883 (1990).

    Article  Google Scholar 

  10. R. Sherman and W. Whitlock, The removal of hydrocarbons and silicone grease stains from silicon wafers, J. Vac. Sci. Technol. A 8(3), 563–567 (1990).

    CAS  Google Scholar 

  11. J. P. Coad, H. E. Bishop, and J. C. Riviere, Electron-beam assisted absorption on the Si (111) Surface, Surface Sci. 21, 253–264 (1970).

    Article  CAS  Google Scholar 

  12. H. H. Madden and G. Ertl, Decomposition ofcarbon monoxide on a (110) nickel surface, Surface Sci. 35, 211–226 (1973).

    Article  CAS  Google Scholar 

  13. N. M. Kitchen and C. A. Russell, Silicone oils on electrical contacts—effects, sources and countermeasures,IEEE Trans. Parts, Hybrids, Packaging PHP-12, 24–28 (1973).

    Google Scholar 

  14. R. Bouwman, J. B. van Meachelen, and A. A. Holscher, Surface cleaning by low-temperature bombardment with hydrogen particles:an AES investigation on copper and Fe-Cr-Ni steel surfaces, Appl. Surface Sci. 15, 224–237 (1983).

    Google Scholar 

  15. J. F. Moulder and D. F. Paul, Characterization of metal matrix composites, Physical Electronics Laboratories Application Note L9401, Eden Prairie, MN (1994).

    Google Scholar 

  16. J. Orloff, Focused ion beams, Sci. Am., p. 96 (Oct. 1991).

    Google Scholar 

  17. G. R. Matusiewocz, S. J Kirch, and V. J. Seeley (eds.), The role of focused ion beams in physical failure analysis, Proc. 29th Annual IEEE Intl. Reliability Physics Symposium, IEEE Cat. No. 91CH2974-4 (1991).

    Google Scholar 

  18. J. Melngailis, Critical review: focusedionbeamtechnology and applications, J. Vac. Sci. Technol. B, 5, 469–495 (1987).

    CAS  Google Scholar 

  19. K. Nikawa, K. Nasu, M. Murase, T. Taito, T. Adachi, and S. Inoue, New applications of focused ion beam technique to failure analysis and process monitoring of VLSI, Proc. 27th Annual IEEE lntl. Reliability Physics Symposium, IEEE Cat. No. 91CH2974-4 (1989), pp. 43–52.

    Google Scholar 

  20. R. G. Lee and J. C. Morgan, Integration of a focused ion beam system in a failure analysis environment, ISTFA-91: The 17th lntl. Symposium for Testing and Failure Analysis, ISTFA (1991).

    Google Scholar 

  21. A. Zalar and S. Hoffman, Crater edge profiling of Ni/Cr multilayer thin films by scanning Auger microscopy (SAM), Surf. Interface Anal. 2(5), 183–186 (1980).

    Article  CAS  Google Scholar 

  22. N. J. Taylor, J. S. Johannessen, and W. E. Spicer, Crater-edge profiling in interface analysis employing ion-beam etching and AES, Appl. Phys. Lett. 29(8), 497–498 (1976).

    Article  CAS  Google Scholar 

  23. Y. X. Wang, Y. D. Cui, Z. G. Chen, E. Lambers, and P. H. Holloway, Auger crater-edge profiling of multilayer thin films by scanning Auger spectroscopy, J. Vac. Sci. Technol. A 8 (3), 2241–2245 (1990).

    CAS  Google Scholar 

  24. M. L. Tarng and D. G. Fisher, Auger depth profiling of thick insulating films by angle lapping, J. Vac. Sci. Technol. 15(1), 50–53 (1978).

    Article  CAS  Google Scholar 

  25. I. K. Brown, D. D. Hall, and J. M. Walls, The depth resolution of composition-depth profiles obtained by ball-cratering and Auger electron spectroscopy, Vacuum 31(10–12), 625–629 (1981).

    CAS  Google Scholar 

  26. L. L. Levenson, Sectioning thick coatings for scanning Auger electron spectroscopy, Test Meas. World, 84–92 (Nov. 1985).

    Google Scholar 

  27. K. L. Black, Carborundum, Inc., Phoenix, AZ, private communication.

    Google Scholar 

  28. M. Tabe, UV ozone cleaning of silicon substrates in silicon molecular beam epitaxy, Appl. Phys. Lett. 45, 1073–1075 (1984).

    Article  CAS  Google Scholar 

  29. J. R. Vig, UV/ozone cleaning of surfaces:, J. Vac. Sci. Technol. A 3(3), 1027–1034 (1985).

    Article  CAS  Google Scholar 

  30. J. M. Lenssinck, A. J. Hoeven, E. J. van Loenen, and K. Kijkkamp, Carbon removal from as-received samples in ultra-high vacuum using ultraviolet light and ozone beam, J. Vac. Sci. Technol. B 9(4), 1963–1967 (1991).

    Article  CAS  Google Scholar 

  31. R. R. Sowell, R. E. Cuthrell, D. M. Mattox, and R. D. Bland, Surface cleaning by ultraviolet radiation, J. Vac. Sci. Technol 11(1), 474–475 (1974).

    Article  CAS  Google Scholar 

  32. P. H. Holloway and D. W. Blushmire, Detection by Auger electron spectroscopy and removal by ozonization of photoresist residues, Proc. 12th Annual IEEE Reliability Physics Symp. IEEE Cat. NO. 74CH0839-1 (1974), pp. 12–16.

    Google Scholar 

  33. B. S. Krusor, D. K. Biegelsen, R. D. Yingling, and J. R. Abelson, Ultraviolet-ozone cleaning of silicon surfaces studied by Auger spectroscopy, J. Vac. Sci. Technol. B 7(1), 129–130 (1989).

    Article  CAS  Google Scholar 

  34. T. Momose, Y. Maeda, K. Asano, and H. Ishimaru, Surface analysis of carbon on ozone treated metals, J. Vac. Sci. Technol. A 13(3), 515–519 (1995).

    Article  CAS  Google Scholar 

  35. C. G. Worley and R. W. Linton, Removing sulfur from gold using ultraviolet/ozone cleaning, J. Vac. Sci. Technol. A 13(4), 2281–2284 (1995).

    Article  CAS  Google Scholar 

  36. J. P. Hobson and E. V. Komelsen, A target transfer system at ultra-high vacuum, Proc. 7th Intl. Vac. Congress and 3rd Intl Conf. on Solid Surfaces, Vienna, Austria (1977), pp. 12–16.

    Google Scholar 

  37. J. P. Hobson, First intercontinental test of UHV transfer device, J.Vac. Sci. Technol. 15, 1609–1611 (1978).

    Google Scholar 

  38. T. Fleisch, A. J. Shephard, T. Y. Ridley, W. E. Vaughn, N. Winograd, W. E. Baitinger, G. L. Ott, and W. N. Delgass, A system for transferring samples between chambers in UHV, J. Vac. Sci. Technol. 15, 1756–1760 (1978).

    Article  CAS  Google Scholar 

  39. G. L. Price, Preservation and Regeneration of an MBE Grown Surface, Collected Papers of 2nd Int. Symp. MBE and Related Clem Surface Technology, Tokyo, Japan, Jpn. Soc. Appl. Phys. (1982), pp. 259–262.

    Google Scholar 

  40. R. Lieberman and D. L. Klein, Temporary protection of silicon surfaces by iodine films, J. Electrochem. Soc. 113(9), 956–958 (1966).

    CAS  Google Scholar 

  41. J. G. Linner, S. A. Livesley, D. S. Harrison, and A. L. Steiner, A new technique for removal of amorphous phase tissue water without ice crystal damage: a preparative method for ultrastructural analysis and immunoelectron microscopy, J. Histochem. Cytochem. 34 (9), 1123–1135 (1986).

    CAS  Google Scholar 

  42. S. A. Livesey, A. Del Campo, A. W. McDawa, and J. T. Stasny, Cryofixation and ultra-low-temperature freeze-drying as a preparative technique for TEM, J. Microsc. 161 (2), 205–215 (1990).

    Google Scholar 

  43. S. A. Livesey and J. G. Linner, Cyrofixation methods for electron microscopy, in: Low Temperature Biochemistry: Emerging Applications and Engineering Contributions, BED Vol. 10, HTD Vol. 98 (J. J. McGrath and K. R. Diller, eds.), Am. Soc. Mech. Engrs., New York (1988).

    Google Scholar 

  44. J. B. Bindell and P. F. Schmidt, The detection of trace impurities in liquids by Auger electron spectroscopy, Bell Laboratories memo, Murray Hill, NJ (1976).

    Google Scholar 

  45. W. H. Holt and C. M. Blackmon, Simple techique for the flat smooth mounting of thin foils, Rev. Sci. Instrum. 51 (5), 671–673 (1980).

    Article  Google Scholar 

  46. A. J. Bevolo, B.J. Beaudry, and K. A. Gschneidner Jr., Auger analysis of the passivation of gadolinium by electropolishing, J. Electrochem. Soc. 127, 2556–2557 (1980).

    CAS  Google Scholar 

  47. G. J. Slusser, IBM-Essex Junction, VT, private communication.

    Google Scholar 

  48. P. B. DeGroot and R. H. Scott, Extending replication methods to Auger electron spectroscopy by using conductive replicas, Microbeam Analysis-1979, San Francisco Press, San Francisco, CA (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lindfors, P.A. (2002). Specimen Handling: Cleaning and Processing. In: Czanderna, A.W., Powell, C.J., Madey, T.E., Hercules, D.M., Yates, J.T. (eds) Specimen Handling, Preparation, and Treatments in Surface Characterization. Methods of Surface Characterization, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-306-46913-8_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-46913-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45887-3

  • Online ISBN: 978-0-306-46913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics