New Trends in Raman Studies of Organic Photochromes

  • Jean Aubard
Part of the Topics in Applied Chemistry book series (TAPP)

Keywords

Raman Spectrum Open Form Transient Absorption SERS Spectrum Resonance Raman 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. J. Ashwell, in: Spectroscopy of New Materials (R. J. H. Clark and R. E. Hester, eds), pp. 61–85, John Wiley & Sons, New York (1993).Google Scholar
  2. 2.
    S. A. Krysanov and M. Alfimov, Ultrafast formation of transients spiropyran photochromism, Chem. Phys. Lett. 91, 77–81 (1982).CrossRefGoogle Scholar
  3. 3.
    N. P. Ernsting and T. Arthen-Engeland, Photochemical ring-opening reaction of indolinospiropyrans studied by subpicosecond transient absorption, J. Phys. Chem. 95,5502–5508 (1991) and references therein.CrossRefGoogle Scholar
  4. 4.
    N. Tamai and H. Masuhara, Femtosecond transient absorption spectroscopy of a spirooxazine photochromic reaction, Chem. Phys. Lett. 191, 189–192 (1992).CrossRefGoogle Scholar
  5. 5.
    H. Miyasaka, S. Araki, A. Tabata, T. Nobuto, N. Mataga, and M. Irie, Picosecond laser photolysis studies on photochromic reactions of 1,2-bis(2,4,5-trimethyl-3 thienyl) maleic anhydride in solutions, Chem. Phys. Lett 230, 249–254 (1994).Google Scholar
  6. 6.
    N. Tamai and T. Saika, in: Fast Elementary Process in Chemical and Biological Systems (A. Tramer, ed.), pp. 99–105, AIP Press, Woodbury, New York (1996).Google Scholar
  7. 7.
    Y. Yokoyama and Y. Kurita, Photochromism of fulgides and related compounds, Mol. Cryst. Liq. Cryst. 246, 87–94 (1994).Google Scholar
  8. 8.
    G. Arnold and G. Paal, Spectroskopische strukturuntersuchungen an heterozyklischen spiroverbin-dugen, Tetrahedron 27, 1699–1713 (1971).CrossRefGoogle Scholar
  9. 9.
    M. Guiliano, E. Davin-Pretelli, G. Mille, J. Chouteau, and R. Guglielmetti, Infrared and Raman spectroscopic studies of benzothiazolinic spiropyrans and merocyanines, Helv. Chim. Acta 61, 1072–1085 (1978).CrossRefGoogle Scholar
  10. 10.
    E. Davin-Pretelli, M. Guiliano, G. Mille, J. Chouteau, and R. Guglielmetti, Study of infrared and Raman spectra of benzothiazolines and 2-H-chromenes, constitutive parts of benzothiazolinic spiropyrans. Synthetic aspect, Helv. Chim. Acta 60, 215–230 (1977).CrossRefGoogle Scholar
  11. 11.
    G. Arnold, Cspiro-O valence vibrations in spiropyrans, Z. Naturforsch., B 21, 291–292 (1966).Google Scholar
  12. 12.
    C. Schiele and G. Arnold, Zur struktur des photochromen form des 6-nitro-trimethyindolinobenzo-pyranen, Tetrahedron Lett. 13, 1191–1195 (1967).Google Scholar
  13. 13.
    J. Aubard, J. 1. Albert, R. Dubest, and J. E. Dubois, Evidence for the opening of 6-nitro-indolinospiropyran derivatives in the solid state upon laser irradiation: A comparative Raman study. Paper presented at the Societé Française de Chimie Meeting “Dynamique des Systémes Chimiques,” Paris, May 1989.Google Scholar
  14. 14.
    J. Aubard, J. L. Albert, and J. R. Dubois, in: Raman Spectroscopy, Liner and Nonlinear (J. Lascombe and P. V. Huong, eds), pp. 211–212, John Wiley & Sons, Chichester (1982).Google Scholar
  15. 15.
    J. Aubard, J. L. Albert, and J. R. Dubois, Time-resolved resonance Raman study of transient benzoxazolinic merocyanines, J. Raman Spectrosc. 14, 83–86 (1983).Google Scholar
  16. 16.
    M. Delamar, J. Aubard, J. L. Albert, and J. E. Dubois, XPS study of a benzoxazolinic spiropyran and a related permanent merocyanine, J. Electron. Spectrosc. Relat. Phenom. 28, 289–293 (1983).CrossRefGoogle Scholar
  17. 17.
    S. Takeda, K. K. Kuroyanagi, S. Matsubara, and H. Takahashi, in: Proceedings of the 9th International Conference on Raman Spectroscopy (M. Tsuboi, ed.), pp. 322–323, Chemical Society of Japan, Tokyo (1984).Google Scholar
  18. 18.
    U. Klüter, W. Hub, and S. Schneider, Resonance CARS spectra of metastable merocyanines produced by UV-photolysis of spirooxazines, Springer Proc. Phys. 4l, 152–155 (1985).Google Scholar
  19. 19.
    J. J. Meyer, J. Aubard, and J. C. Fontaine, A specific time-resolved resonance Raman spectrometer, J. Phys. E.: Sci. Instrum. 18, 430–433 (1985).CrossRefGoogle Scholar
  20. 20.
    J. L. Albert, J. P. Bertigny, J. Aubard, R. Dubest, and J. E. Dubois, Etude cinétique et Raman du processus d’ouverture d’un spiropyranne indolinique, J. Chim. Phys. 82, 521–525 (1985).Google Scholar
  21. 21.
    J. Aubard, J. J. Meyer, J. C. Fontaine, P. Levoir, and J. E. Dubois, Sensitive optical multichanel spectrometer for time-resolved resonance Raman studies of transient photomerocyanines, Spectrosc. Lett. 19, 725–739 (1986).Google Scholar
  22. 22.
    O. Poizat, N. Locoge-Karbowski, and G. Buntinx, Time-resolved resonance Raman spectroscopy of photochemical intermediates, Trends in Phys. Chem. 2, 199–219 (1991).Google Scholar
  23. 23.
    C. Allet, G. Buntinx, N. Locoge-Karbowski, and O. Poizat, Synchronization of a Q-switched Nd:YAG pumped dye laser and an excimer laser for time-resolved Raman experiments, J. Phys. VI C-7, 463–466 (1991).Google Scholar
  24. 24.
    H. Takahashi, K. Yoda, H. Isaka, T. Ohzeki, and Y. Sakaino, Resonance Raman studies of transient species in the photochromism of l′,3′,3′-trimethylspiro-[2H-l-benzopyran-2,2′-indoline](BIPS), Chem. Phys. Lett. 140, 90–94 (1987).CrossRefGoogle Scholar
  25. 25.
    T. Yuzawa, K. Ebihara, H. Hiura, T. Ohzeki, and H. Takahashi, Structures oftransient species in the photochromic reaction of BIPS: Time-resolved resonance Raman study of isotopically substituted analogues, Spectrochim. Acta 50A, 1487–1498 (1994).Google Scholar
  26. 26.
    H. Takahashi, H. Murakawa, Y. Sakaino, T. Ohzeki, J. Abe, and O. Yamada, Time-resolved resonance Raman studies of the photochromic reaction of 6-nitro-l′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] (6-nitro BIPS), J. Photochem. Photobiol. 45, 233–241 (1988).CrossRefGoogle Scholar
  27. 27.
    T. Yuzawa, S. Shimojima, and H. Takahashi, Photochromic reaction of6-nitro BIPS: Time-resolved resonance Raman and absorption study, J. Mol. Struct. 352/353, 497–507 (1995).Google Scholar
  28. 28.
    S. Hashimoto, A. Shimojima, T. Yuzawa, H. Hivra, J. Abe, and H. Takahashi, Time-resolved resonance Raman and molecular orbital studies of the structures of the transient species involved in the photochromic reaction of 2,2′-spirobi[2H-1-benzopyran](SBP), J. Mol. Struct. 242, 1–14 (1991).CrossRefGoogle Scholar
  29. 29.
    H. Sato, A. Matsuzaki, S. Nishio, M. Yoshimi, K. Yamamoto, and H. Tomioka, A Raman Spectroscopic study of merocyanine aggregates of a N-l5 isomer of 6-nitro BIPS. A direct evidence for the association through the NO2 bridges, Chem. Lett. 8, 715–716 (1996).Google Scholar
  30. 30.
    S. Schneider, Investigation of the photochromic effect of spiro[indolino-naphthoxazine] derivatives by time-resolved spectroscopy, Z. Phys. Chem. N. F. 154, 91–119 (1987).Google Scholar
  31. 31.
    S. Schneider, A. Mindl, G. Elfingerand, and M. Melzig, Photochromism of spirooxazines. I. Investigation of the primary process in the ring-opening reaction by picosecond time-resolved absorption and emission spectroscopy, Ber. Bunsenges. Phys. Chem. 91, 1222–1224 (1987).Google Scholar
  32. 32.
    S. Schneider, F. Baumann, U. Klüter, and M. Melzig, Photochromism of spirooxazines. II. CARS investigation of the isomeric distribution, Ber. Bunsenges. Phys. Chem. 91, 1225–1228 (1987).Google Scholar
  33. 33.
    S. Aramaki and G. H. Atkinson, Spirooxazine photochromism: Picosecond time-resolved Raman and absorption spectroscopy, Chem. Phys. Lett 170, 181–186 (1990).CrossRefGoogle Scholar
  34. 34.
    S. Aramaki and G. H. Atkinson, Spironaphthopyran photochromism: Picosecond time-resolved spectroscopy, J. Am. Chem. Soc. 114, 438–444 (1992).CrossRefGoogle Scholar
  35. 35.
    N. Tamai, T. Saika, T. Shimidzu, and M. Irie, Femtosecond dynamics of a thiophene oligomer with a photoswitch by transient absorption spectroscopy, J. Phys. Chem. 100, 4689–4692 (1996).CrossRefGoogle Scholar
  36. 36.
    A. Kellmann, F. Tfibel, R. Dubest, P. Levoir, J. Aubard, E. Pettier, and R. Guglielmetti, Photophysics and kinetics of two photochromic indolinospirooxazines and one indolinospironaphthopyran, J. Photochem. Photobiol. A49, 63–73 (1989).Google Scholar
  37. 37.
    J. Aubard, G. Buntinx, R. Dubest, P. Levoir, J. P. Marsault, G. Lévi, A. Samat, A. Kellmann, F. Tfibel, and R. Guglielmetti, Time-resolved resonance Raman spectroscopy of transient indolinos-pironaphthoxazine photomerocyanines, in: Proceedings of the XIII ICORS (W. Kiefer et al. eds.), pp. 158–159, John Wiley & Sons, Chichester (1992).Google Scholar
  38. 38.
    S. Maeda, K. Mitsuhashi, Y. T. Osano, S. Nakamura, and M. Ito, The molecular design and applications of spirooxazines Mol. Cryst. Liq. Cryst. 246, 223–230 (1994).Google Scholar
  39. 39.
    P. Lareginie, V. Lokshin, A. Samat, R. Guglielmetti, and G. Pèpe, First permanent opened forms in spirofindoline-oxazine] series: Synthesis and structural elucidation, J. Chem. Soc., Perkin Treats. 2 (1996), 107–111.Google Scholar
  40. 40.
    J. Aubard, P. Lareginie, G. Buntinx, V. Lokshin, and R. Guglielmetti, Time-resolved resonance Raman spectroscopy of spirooxazine photochromes: Experimental evidences for a TTC isomer open form in various solvents, J. Raman Spectrosc. (to be submitted).Google Scholar
  41. 41.
    G. Baillet, G. Giusti, and R. Guglielmetti, Comparative photodegradation study between spiro[indo-line-oxazine] and spiro[indoline-pyran] derivatives in solution, J. Photochem. Photobiol. A 70, 157–161 (1993).Google Scholar
  42. 42.
    V. Malatesta, M. Milosa, R. Millini, L. Lanzini, P. Bortolus, and S, Monti, Oxidative degradation of organic photochromes, Mol. Cryst. Liq. Cryst. 246, 303–310 (1994).Google Scholar
  43. 43.
    G. Baillet, V Lokshin, R. Guglielmetti, and G. Giusti, Photooxidation of the photochromic compound l,3,3-trimethylspiro[indoline-naphthopyran] in the methanol, C. R. Acad. Sci., Paris 319, 41–46 (1994).Google Scholar
  44. 44.
    G. Baillet, G. Giusti, and R. Guglielmetti, Study of the fatigue process and the yellowing of polymeric films containing spirooxazine photochromic compounds, Bull. Chem. Soc. Jpn 68, 1220–1225 (1995).Google Scholar
  45. 45.
    J. Biteau, F. Chaput, and J. P. Boilot, Photochromism of spirooxazine-doped gels, J. Phys. Chem. 100, 9024–9031 (1996).CrossRefGoogle Scholar
  46. 46.
    J. Aubard, K. Karlsson, B. Luccioni-Houzé, G. Lévi, and R. Guglielmetti, Analytical SERS: Detection and identification of photodegradation products in organic photochromes, in: Proceedings of the XIV ICORS (S. Asher and P. B. Stein, eds.), pp. 690–691, John Wiley & Sons, Chichester (1996).Google Scholar
  47. 47.
    J. Aubard, K. Karlsson, R. Dubest, G. Lévi, B. Luccioni-Houzé C. Salémi-Delvaux, and R. Guglielmetti, Identification of surface enhanced Raman spectroscopy of photodegradation products in organic photochromes, Mol. Cryst. Liq. Cryst. 298, 37–44 (19997).Google Scholar
  48. 48.
    J. Aubard, C. M-Bossa, J. P. Bertigny, R. Dubest, G. Lévi, E. Boschet, and R. Guglielmetti, Surface enhanced Raman spectroscopy of photochromic spirooxazines and related-spiropyrans, Mol. Cryst. Liq. Cryst. 246, 275–278 (1994).Google Scholar
  49. 49.
    R. K. Chang and T. E. Furtak, Surface Enhanced Raman Scattering, Plenum Press, New York (1982).Google Scholar
  50. 50.
    N. Felidj, J. Aubard, and G. Levi, Effects of various halide ions and probe molecules on inelastic Mie scattering from SERS active surfaces: Determination of particle size distributions from band shapes simulation, J. Chem. Phys. 24, 9735–9746 (1996).Google Scholar
  51. 51.
    J. Aubard, E. Bagnasco, J. Pantigny, M. F. Ruasse, G. Lévi and E. Wentrup-Byrne, An ion-exchange reaction as measured by surface enhanced Raman spectroscopy on silver colloids J. Phys. Chem. 99, 7075–7081 (1995).CrossRefGoogle Scholar
  52. 52.
    S. Bernard, M. A. Schwaller, J. Moiroux, E. A. Bazzaoui, G. Lévi, and J. Aubard, SERS identification of quinone-imine species as oxidation products of antitumour ellipticines, J. Raman Spectrosc. 27, 539–547 (1996).CrossRefGoogle Scholar
  53. 53.
    R. Dubest, P. Levoir, J. J. Meyer, J. Aubard, G. Baillet, G. Giusti, and R. Guglielmetti, Computer controlled system designed to measure photodegradation of photochromic compounds, Rev. Sci., Instrum. 64, 1803–1808 (1993).CrossRefGoogle Scholar
  54. 54.
    S. Schneider, H. Grau, and J. Ringer, Surface enhanced resonance Raman studies of spiropyrans (BIPS and derivatives), Mol. Cryst. Liq. Cryst. 246, 267–274 (1994).Google Scholar
  55. 55.
    R. Guglielmetti, in: Photochromism, Molecules and Systems (H. Dürr and H. Bouas-Laurent, eds.), pp. 314–466, Elsevier, Amsterdam (1990).Google Scholar
  56. 56.
    J. W. Macklin, New method for obtaining Raman spectra of extremely small quantities of light-absorbing substances adsorbed on silver from very diluted solutions, J. Raman Spectrosc. 26, 1077–1081 (1995).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jean Aubard
    • 1
  1. 1.Institut de Topologie et de Dynamique des SystèmesUniversité Denis DiderotParisFrance

Personalised recommendations