Molecular Modeling Calculations

  • Shinichiro Nakamura
Part of the Topics in Applied Chemistry book series (TAPP)

Keywords

Electron Paramagnetic Resonance Configuration Interaction Photochemical Product Photochromic Compound Internal Hydrogen Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Dürr and H. Bouas-Laurent, (eds.), Photochromism, Molecules and Systems, Elsevier, Amsterdam (1990).Google Scholar
  2. 2.
    K. B. Lipkowitz and D. B. Boyd (eds.), Reviews in Computational Chemistry, Vols. 1–4, VCH, New York (1993).Google Scholar
  3. 3.
    Z. Yoshida and T. Kitao (eds.), Chemistry of Functional Dyes, Mita Press, Tokyo (1989).Google Scholar
  4. 4.
    J. Griffiths, Colour and Constitution of Organic Molecules, Academic Press, London (1976).Google Scholar
  5. 5.
    J. Fabian and H. Hartmann, Light Absorption of Organic Colorants, Springer-Verlag, Berlin (1980).Google Scholar
  6. 6.
    P. B. Vissher and L. M. Falicov, Exact solution of the one-band p-electron theory of benzene, J. Chem. Phys. 52, 4217–4223 (1970).Google Scholar
  7. 7.
    S. Iwata and K. F. Freed, Ab initio evaluation of correlation contributions to the true π-electron Hamiltonian. Ethylene, J. Chem. Phys. 61, 1500–1509 (1974).CrossRefGoogle Scholar
  8. 8.
    M. Adachi and S. Nakamura, Comparison of the INDO/S and the CNDO/S method for the absorption wavelength calculation of organic dyes, Dyes and Pigments 17, 287–296 (1991).CrossRefGoogle Scholar
  9. 9.
    Y. Kubo, M. Kuwana, K. Yoshida, Y. Tomotake, T. Matsuzaki, and S. Maeda, Naphthoquinone methide type near-I.R. dye: The properties and structure of 4-(2′-acetylamino-4′-diethylaminophe-nylimino)-l,4-dihydronaphthylidene-malononitrile, J. Chem. Soc., Chem. Commun., 1989 35–37.Google Scholar
  10. 10.
    Y. Kubo, K. Yoshida, M. Adachi, S. Nakamura, and S. Maeda, Experimental and theoretical study of near-infrared absorbing naphthoquinone methide dyes with a nonplanar geometry, J. Am. Chem. Soc. 113, 2868–2873 (1991).CrossRefGoogle Scholar
  11. 11.
    M. Adachi, Y. Murata, and S. Nakamura, Theoretical and experimental studies of indoaniline dyes. A novel relationship between absorption spectra and molecular structure, J. Am. Chem. Soc. 115, 4331–4338 (1993).CrossRefGoogle Scholar
  12. 12.
    M. Adachi, Y. Murata, and S. Nakamura, The relationship between the structures and absorption spectra of cyan color indoaniline dyes, J. Org. Chem. 58, 5238–5244 (1993).Google Scholar
  13. 13.
    M. Adachi, M. Yoneyama, and S. Nakamura, Pressure-induced changes in the absorption spectrum of monolayers at the air/water interface: Comparison of calculations with experiments, Langmuir 8, 2240–2246(1992).CrossRefGoogle Scholar
  14. 14.
    S. Nakamura, A. Flamini, V. Fares, and M. Adachi, On the extraordinary spectral similarity of nickel(II) phthalocyanine and NiII(C11N7H2)2. J. Phys. Chem. 96, 8351–8356 (1992).CrossRefGoogle Scholar
  15. 15.
    M. Gouterman, Optical spectra and electronic structure of porphyrins and related rings, in: The Porphyrins (D. Dolphin, ed.), Vol. 3, p. 1, Academic Press, New York (1978).Google Scholar
  16. 16.
    M. Adachi and S. Nakamura, Absorption spectrum shift in the solid state. A MO study of pyrrolopyrrole pigment, J. Phys. Chem. 98, 1796–1801 (1994).CrossRefGoogle Scholar
  17. 17.
    M. Adachi, Y. Murata, and S. Nakamura, Spectral similarity and difference of naphthalenetetra-carboxylic dianhydride, perylenetetracarboxylic dianhydride, and their derivatives, J. Phys. Chem. 99, 14240–14246(1995).Google Scholar
  18. 18.
    K. Uchida, S. Nakamura, and M. Irie, Thermally irreversible photochromic systems. Substituent effect on the absorption wavelength of 11,12-dicyano-5a,5b-dihydro-5a,5b-dimethy lbenzo[1,2-b:6,5-b′]bis[l]benzothiophene, Bull. Chem. Soc. Jpn. 65, 430–435 (1992).Google Scholar
  19. 19.
    P. Lareginie, A. Samat, and R. Guglielmetti, Structure-visible absorption relationship in the photochromic spiro(indoline-naphthoxazine) series, J. Phys. Org. Chem. 9, 262–264 (1996).CrossRefGoogle Scholar
  20. 20.
    J. J. P. Stewart, Optimization of parameters for semiempirical methods, J. Comput. Chem. 10, 209–220 (1989).Google Scholar
  21. 21.
    O. Kitao and H. Nakatsuji, Cluster expansion of the wave function. Valence and Rydberg excitations and ionizations of benzene, J. Chem. Phys. 87, 1169–1182 (1987).CrossRefGoogle Scholar
  22. 22.
    Proceedings of the 1st International Symposium on Organic Photochromism, Mol. Cryst. Liq. Cryst. 246, 1–412 (1994) and references therein.Google Scholar
  23. 23.
    S. Nakamura, K. Uchida, A. Murakami, and M. Irie, An initio MO and 1H NMR NOE studies of photochromic spironaphthoxazine, J. Org. Chem. 58, 5543–5545 (1993).Google Scholar
  24. 24.
    S. Hashimoto, A. Shimojima, T. Yuzawa, H. Hiura, J. Abe, and H. Takahashi, Time-resolved resonance Raman and molecular orbital studies of the structure of the transient species involved in the photochromic reaction of 2,2′-Spirobi[2H-l-benzopyran], J. Mol. Struct. 242, 1–14 (1991).CrossRefGoogle Scholar
  25. 25.
    W. Thiel, The MNDOC method, a correlated version of the MNDO model, J. Am. Chem. Soc. 103, 1413–1420(1981).Google Scholar
  26. 26.
    R. B. Woodward and R. Hoffinann, The Conservation of Orbital Symmetry, Verlag Chemie, Weinheim (1970).Google Scholar
  27. 27.
    M. Irie, and M. Mohri, Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives, J. Org. Chem. 53, 803–808 (1988).CrossRefGoogle Scholar
  28. 28.
    S. Nakamura, and M. Irie, Thermally irreversible photochromic systems. A theoretical study, J. Org. Chem. 53, 6136–6138 (1988).Google Scholar
  29. 29.
    M. Irie, Advances in photochromic materials for optical data storage media, Jpn. J. Appl. Phys. 28, 215–219 (1989).CrossRefGoogle Scholar
  30. 30.
    K. Uchida, S. Nakamura, and M. Irie, Photochromism of dinaphthylthene derivatives. Stability of the close-ring forms, Res. Chem. Intermed. 21, 861 (1995).Google Scholar
  31. 31.
    A. Samat, R. Guglielmetti, Y. Ferre, H. Pommier, and J. Metzger, Conformational study of the open forms of benzothiazoline spiropyrans by estimation of the steric interaction energy and the electronic stability of the system (EHT [extended Huckel theory] Method), J. Chim. Phys. 69, 1202–1210 (1972).Google Scholar
  32. 32.
    Y. Ferre, E.-J. Vincent, J. Metzger, A. Samat, and R. Guglielmetti, Etude conformationnelle des formes ouvertes d’un spiropyranne benzothiazolinique, Tetrahedron 30, 787–792 (1974).CrossRefGoogle Scholar
  33. 33.
    A. Le Beuze, A. Botrel, A. Samat, and R. Guglielmetti, Structural study of benzothiazolinic spiropyrans by the theoretical and experimental determination of dipole moments, J. Mol. Struct. 40, 77–87 (1977).Google Scholar
  34. 34.
    H. Pommier, A. Samat, J. Metzger, and R. Guglielmetti, Electronic structure of benzothia-zolinic spiropyrans (closed and open forms) by the CNDO/2 method, J. Chim. Phys. 72, 589–594(1975).Google Scholar
  35. 35.
    E. Pottier, A. Samat, R. Guglielmetti, D. Siri, and G. Pepe, Modeling of photochromic spiropyrans and spirooxazines by molecular mechanics and comparison with experimental data, Bull. Soc. Chim. Belg. 101, 207–213 (1992).Google Scholar
  36. 36.
    F. Zerbetto, S. Monti, and G. Orlandi, Thermal and photochemical interconversion of spiropyrans and merocyanines, J. Chem. Soc., Faraday Trans. 2. 80, 1513–1527 (1984).Google Scholar
  37. 37.
    N. P. Ernsting, B. Dick, and T. Arten-Engelard, The primary photochemical reaction step of unsubstituted indolino-spiropyrans, Pure Appl. Chem. 62, 1483–1488 (1990).Google Scholar
  38. 38.
    V. Malatesta, G. Ranghino, U. Romano, and P. Allegrini, Photochromic spironaphthoxazines: A theoretical study, Int. J. Quantum Chem. 42, 879–887 (1992).CrossRefGoogle Scholar
  39. 39.
    V. Malatesta, L. Longo, R. Fusco, and G. Marconi, Comparison ofphotochromic behavior between spirooxazines and spiropyrans: Theoretical calculations of ground and excited states, Mol. Cryst. Liq. Cryst. 246, 235–239 (1994).Google Scholar
  40. 40.
    S. R. Keum, M. S. Hur, P. M. Kazmaier, and E. Buncel, Thermo-and photochromic dyes: Indolino-benzospiropyrans. Part 1. UV-VIS spectroscopic studies of l,3,3-spiro(2H-l-benzopyran-2,2′- indolines) and the open-chain merocyanine forms: solvatochromism and medium effects on spiro ring formation, Can. J. Chem. 69, 1940–1947 (1991).Google Scholar
  41. 41.
    Y. Abe, R. Nakao, T. Horii, S. Okada, and M. Irie, MNDO-PM3 MO studies on thermal isomerization of photochromic 1′.2′.3′-trimethyl-6-nitrospiro [2H-l-benzopyran-2,2′-indoline], J. Photochem. Photobiol. A 95, 209–214 (1996).Google Scholar
  42. 42.
    H. Pommier, A. Samat, R. Guglielmetti, M. Rajzmann, and G. Pepe, Investigation of some photochromic structures by molecular mechanics and SCF MO calculations, Mol. Cryst. Liq. Cryst. 246, 241–246(1994).Google Scholar
  43. 43.
    R. Pachter, T. M. Cooper, L. V Natarajan, K. A. Obermeier, R. L. Crane, and W. W. Adams, Molecular dynamics simulation ofpoly(spiropyran-L-glutamate): Influence ofchromophore isomerization, Biopolymers 32, 1129–1140 (1992).CrossRefGoogle Scholar
  44. 44.
    G. Pepe, D. Siri, A. Samat, E. Pottier, and R. Guglielmetti, Modeling of spiropyran aggregates with the help of GenMol program, Mol. Cryst. Liq. Cryst. 246, 247–250 (1994).Google Scholar
  45. 45.
    S. Aldoshin, I. Chuev, A. Utenyshev, O. Filipenko, J. L. Pozzo, V. Lokshin, and R. Guglielmetti, Specific structural features and photochemical properties of three benzo-annulated 2,2-di-phenyl[2H] chromenes, Acta Crystallogr., Sect. C 52, 1834–1838 (1996).Google Scholar
  46. 46.
    Y. Atassi, J. A. Delaire, and K. Nakatani, Coupling between photochromism and second-harmonic generation in spiropyran-and spirooxazine-doped polymer films, J. Phys. Chem. 99, 16320–16326 (1995).CrossRefGoogle Scholar
  47. 47.
    A. Alberti, C. Barberis, M. Campredon, G. Gronchi, and M. Guerra, An EPR, electrochemical, and ab initio investigation on the nature of the radical ions formed in the reduction of some photochromic compounds of the spiroindolinic series, J. Phys. Chem. 99, 15779–15784 (1995).CrossRefGoogle Scholar
  48. 48.
    H. D. Ilge and R. Colditz, Electronic and steric substituent effects on the deactivation behavior of fulgides, J. Mol. Struct. 218, 39–44 (1990).CrossRefGoogle Scholar
  49. 49.
    Yayoi Yokoyama, K. Ogawa, T. Iwai, K. Shimazaki, Y. Kajihara, T. Goto, Yashushi Yokoyama, and Y. Kurita, Study on the conformation of an isopropyl-substituted furylfulgide. Photochromic coloring reaction and thermal racemization, Bull. Chem. Soc. Jpn. 69, 1605–1612 (1996).Google Scholar
  50. 50.
    Yashushi Yokoyama, S. Uchida, Yayoi Yokoyama, Y. Sugawara, and Y. Kurita, Diastereoselective photochromism of an (R)-binaphthol-condensed indolylfulgide, J. Am. Chem. Soc. 118, 3100–3107 (1996).CrossRefGoogle Scholar
  51. 51.
    S. Nespurek, J. Lukas, S. Bohm, and Z. Bastl, Photochromism of 3-(3-pyridyl) sydnone: An investigation by electron spectroscopy for chemical analysis (ESCA) and molecular orbital calculations, J. Photochem. Photobiol. A 84, 257–264 (1994).Google Scholar
  52. 52.
    S. Nespurek, J. Obrda, and J. Lipinski, A possible explanation for the photochromism of two 4-alkenyl-sydnones, J. Photochem. Photobiol. A 75, 49–59 (1993).Google Scholar
  53. 53.
    S. Nespurek, S. Bohm, and J. Kuthan, Photochromism of sydnones: Structural evidence for the blue colored species from 3-(3-pyridyl) sydnone, J. Mol. Struct. 136, 261–273 (1986).Google Scholar
  54. 54.
    N. P. Gritsan and L. S. Klimenko, Photochromism of quinoid compounds: Properties of photo-induced ana-quinones, J. Photochem. Photobiol. A 70, 103–117 (1993).Google Scholar
  55. 55.
    N. P. Gritsan, I. V. Khmelinski, and O. M. Usov, Experimental and theoretical study of photoenolization mechanism for 1-methylanthraquinone, J. Am. Chem. Soc. 113, 9615–9620 (1991).CrossRefGoogle Scholar
  56. 56.
    N. R Gritsan, Quantum-chemical and experimental investigations of photochromic transformations in quinone compounds, J. Mol. Struct. 181, 285–296 (1988).Google Scholar
  57. 57.
    K. Kownacki, L. Kaczmarek, and A. Grabowska, Single versus double proton transfer in the photochromic Schiff bases. Electronic spectroscopy and synthesis of model compounds, Chem. Phys. Lett. 10, 373–379 (1993).Google Scholar
  58. 58.
    K. Kownacki, A. Mordzinski, R. Wilbrandt, and A. Grabowska, Laser-induced absorption and fluorescence studies of photochromic Schiff bases, Chem. Phys. Lett. 227, 270–276 (1993).Google Scholar
  59. 59.
    A. Grabowska, K. Kownacki, and L. Kaczmarek, Proton transfer along the internal hydrogen bonds in excited Schiff bases. Photochromism in symmetric systems with two equivalent reaction sites, J. Luminescence 60/61, 886–890 (1994).Google Scholar
  60. 60.
    N. A. Garcia, G. Rossbroich, S. E. Braslavsky, H. Dürr, and C. Dorweiler, Photoacoustic measurements and MINDO/3 calculations of energy storage by short-lived species: the spiro[l,8-a]dihydroindolizine-betaine system, J. Photochem. 31, 297–305 (1985).Google Scholar
  61. 61.
    C. Dorweiler, P. Spang, H. Dürr, K. Peters. and H. G. v. Schnering, Photochromic systems. Paper 9. Structural parameters of photochromic dihydroindolizines. X-ray analysis and MINDO/3-calculations, Israel. J. Chem. 25, 246–251 (1985).Google Scholar
  62. 62.
    T. Brotin, J. Walik, J.-P. Desvergne, and H. Bouas-Laurent, Electronic absorption properties of symmetrical dialkoxyanthracenes. Linear dichroism and magnetic circular dichroism, Photochem. Photobiol. 55, 335–347 (1992).Google Scholar
  63. 63.
    M. I. Knyazhansky and A. V Metelista, On photocolored product structure of photochromic azomethines in solutions and crystals, Mol. Cryst. Liq. Cryst. 246, 315–318 (1994).Google Scholar
  64. 64.
    P. Figueiredo, J. C. Lima, H. Santos, M.-C. Wigand, R. Brouillard, A. L. Macanita, and F. Pina, Photochromism of the synthetic 4, 7-dihydroxyflavylium chloride, J. Am. Chem. Soc. 116, 1249–1254(1994).CrossRefGoogle Scholar
  65. 65.
    R. S. Becker, C. Lenoble, and A. Zein, Photophysics and photochemistry of the nitro derivatives of salicylideneaniline and 2-(2′-hydroxyphenyl)benzothiazole and solvent effects, J. Phys. Chem. 91, 3517–3524(1987).Google Scholar
  66. 66.
    W.-H. Fang, X.-Z. You, and Z. Yin, Theoretical studies on the photochromic processes of 4-bromo-N-salicylideneaniline, Theor. Chim. Acta. 92, 297–303 (1995).CrossRefGoogle Scholar
  67. 67.
    M. Sakaguchi, Y. Takuma, K. Mitsuhashi, and S. Nakamura, A molecular orbital study on the photochromic property of pentafulvadiene, Nippon Kagaku Kaishi 10, 1109–1116 (1992).Google Scholar
  68. 68.
    S. Nagaoka, and U. Nagashima, Nodal-plane model in excited-state intramolecular proton transfer, Trends. Phys. Chem. 6: 55–87 (1998).Google Scholar
  69. 69.
    H. G. Heller, Fine Chemicals for the Electronics Industry, (P. Bamfield, ed.), p. 120, Royal Society of Chemistry, London (1986).Google Scholar
  70. 70.
    Y. Yokoyama and Y. Kurita, Photochromic fulgides applicable to optical information storage. Discovery of new nondestructive readout method, Nippon Kagaku Kaishi 10, 998–1005 (1992) and references therein.Google Scholar
  71. 71.
    N. Turro, Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park, California (1978).Google Scholar
  72. 72.
    N. Turro, V. Ramamurthy, W. Cherry, and W. Farneth, The effect of wavelength on organic photoreactions in solution. Reactions from upper excited states, Chem. Rev. 78, 125–145 (1978).CrossRefGoogle Scholar
  73. 73.
    W. G. Dauben, B. Disanayaka, D. J. H. Funhoff, B. E. Kohler, D. E. Schilke, and B. Zhou, Polyene 21Ag and 11Bu states and the photochemistry of provitamin D3, J. Am. Chem. Soc. 113, 8367–8374 (1991).Google Scholar
  74. 74.
    P. E. Share, K. L. Kompa, S. D. Peyerimhoff, and M. C. VanHermert, An MRD CI investigation of the photochemical isomerization of cyclohexadiene to hexatriene, Chem. Phys. 120, 411–419 (1988).CrossRefGoogle Scholar
  75. 75.
    F. Bernardi, M. Olivucci, I. N. Ragazos, and M. Robb, A. new mechanistic scenario for the photochemical transformation of ergosterol: An MC-SCF and MM-VB study, J. Am. Chem. Soc. 114, 8211–8220 (1992).Google Scholar
  76. 76.
    F. Bernardi, M. Olivucci, and M. Robb, Modeling photochemical reactivity of organic systems a new challenge to quantum computational chemistry, Israel J. Chem. 33 265–276 (1993) and references therein.Google Scholar
  77. 77.
    L. Salem, Electrons in Chemical Reactions, John Wiley & Sons, New York (1982).Google Scholar
  78. 78.
    U. Manthe and H. Koeppel, Dynamics on potential energy surfaces with a conical intersection: Adiabatic, intermediate, and diabatic behavior, J. Chem. Phys. 93, 1658–1669 (1990).Google Scholar
  79. 79.
    C. V. Shank, The first step in vision: Femtosecond isomerization of rhodopsin, Science 254, 412–415 (1991) and references therein.Google Scholar
  80. 80.
    S. Nakamura, A. Murakami, M. Adachi, and M. Irie, Ab-initio and semiempirical MO studies on photochromic molecules, Mol. Cryst. Liq. Cryst. 246, 231–234 (1994).Google Scholar
  81. 81.
    H. Petek, K. Yoshihara, Y. Fujiwara, Z. Lin, J. H. Penn, and J. Frederick, Is the nonradiative decay of S1 cis-stilbene due to the dihydrophenanthrene isomerization channel? Suggestive evidence from photophysical measurements on 1,2-diphenylcycloalkenes, J. Phys. Chem. 94, 7539–7543 (1990).CrossRefGoogle Scholar
  82. 82.
    J. Frederick, Y. Fujiwara, J. H. Penn, Y. Yoshihara, and H. Petek, Models for stilbene photoisome-rization: Experimental and theoretical studies of the excited-state dynamics of 1,2-diphenycycloalkenes, J. Phys. Chem. 95, 2845–2858 (1991).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Shinichiro Nakamura
    • 1
  1. 1.Yokohama Research CenterMitsubishi Chemical CorporationYokohamaJapan

Personalised recommendations